Embeded fusion of visual and acoustic for active acoustic source detection with SGGMM

Riad Azzam, N. Aouf
{"title":"Embeded fusion of visual and acoustic for active acoustic source detection with SGGMM","authors":"Riad Azzam, N. Aouf","doi":"10.1109/ELMAR.2014.6923352","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of reliable detection and localization of active sound source using a new fusion approach of the vision and the acoustic data. The usefulness of the solution is fundamental for both video surveillance and video conference systems. In this aim, we propose combining the two heterogeneous modalities of data by augmenting the 3-D vector of RGB colors used by the Spatially Global Gaussians Mixture Model (SGGMM) for background modeling and segmentation using the acoustic Data. The proposed model provides accurate detection of the targets of interest and evaluation results using an implementation version on wireless sensors network (WSN) of the fusion approach shows performance improvement of the proposed detection and localization solution. This technique enabled a better detection of the moving acoustic source in comparison with the SGGMM only.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigate the problem of reliable detection and localization of active sound source using a new fusion approach of the vision and the acoustic data. The usefulness of the solution is fundamental for both video surveillance and video conference systems. In this aim, we propose combining the two heterogeneous modalities of data by augmenting the 3-D vector of RGB colors used by the Spatially Global Gaussians Mixture Model (SGGMM) for background modeling and segmentation using the acoustic Data. The proposed model provides accurate detection of the targets of interest and evaluation results using an implementation version on wireless sensors network (WSN) of the fusion approach shows performance improvement of the proposed detection and localization solution. This technique enabled a better detection of the moving acoustic source in comparison with the SGGMM only.
基于SGGMM的视声融合主动声源检测
本文采用一种新的视觉和声学数据融合方法,研究了主动声源的可靠检测和定位问题。该解决方案的实用性对视频监控和视频会议系统都至关重要。为此,我们提出通过增强空间全局高斯混合模型(SGGMM)用于背景建模和声学数据分割的RGB颜色的三维向量来结合两种异构数据模式。该模型提供了对感兴趣目标的精确检测,并且在无线传感器网络(WSN)上使用融合方法的实现版本的评估结果显示了所提出的检测和定位解决方案的性能改进。与仅使用SGGMM相比,该技术能够更好地检测移动声源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信