A Moving Target Tracking System of Quadrotors with Visual-Inertial Localization

Ziyue Lin, Wenbo Xu, Wei Wang
{"title":"A Moving Target Tracking System of Quadrotors with Visual-Inertial Localization","authors":"Ziyue Lin, Wenbo Xu, Wei Wang","doi":"10.1109/ICRA48891.2023.10161323","DOIUrl":null,"url":null,"abstract":"This paper implements a vision-based moving target tracking system of quadrotors with visual-inertial localization in GNSS-denied indoor environments. We use the visual-inertial odometry to estimate the states of the UAV by minimizing visual and inertial residuals, and estimate the states of the target with extended Kalman Filter from visual detection. This research formulates the target tracking problem as optimization-based trajectory generation where a weighted sum cost function jointly penalizes the tracking error, the control cost of the trajectory and the trajectory length, while enforcing the safety and feasibility constraints. We present a strategy that represents the trajectory as piecewise Bézier curves using Bernstein polynomial basis. Due to the special properties of Bézier curves, the position of the entire trajectory and its derivatives can be directly bounded within the safe spaces, thus this facilitating the dynamics of the quadrotor. The proposed strategy can generate smooth and collision-free tracking trajectories and is time and space efficient. We conduct simulations and real-world experiments to validate the effectiveness of our system.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper implements a vision-based moving target tracking system of quadrotors with visual-inertial localization in GNSS-denied indoor environments. We use the visual-inertial odometry to estimate the states of the UAV by minimizing visual and inertial residuals, and estimate the states of the target with extended Kalman Filter from visual detection. This research formulates the target tracking problem as optimization-based trajectory generation where a weighted sum cost function jointly penalizes the tracking error, the control cost of the trajectory and the trajectory length, while enforcing the safety and feasibility constraints. We present a strategy that represents the trajectory as piecewise Bézier curves using Bernstein polynomial basis. Due to the special properties of Bézier curves, the position of the entire trajectory and its derivatives can be directly bounded within the safe spaces, thus this facilitating the dynamics of the quadrotor. The proposed strategy can generate smooth and collision-free tracking trajectories and is time and space efficient. We conduct simulations and real-world experiments to validate the effectiveness of our system.
基于视觉惯性定位的四旋翼机运动目标跟踪系统
本文实现了一种在无gnss室内环境下,基于视觉惯性定位的四旋翼机运动目标跟踪系统。利用视觉惯性测程法通过最小化视觉和惯性残差来估计无人机的状态,并利用扩展卡尔曼滤波从视觉检测中估计目标的状态。本研究将目标跟踪问题表述为基于优化的轨迹生成,其中一个加权和代价函数联合惩罚跟踪误差、轨迹控制代价和轨迹长度,同时强制执行安全性和可行性约束。我们提出了一种利用Bernstein多项式基将轨迹表示为分段bsamzier曲线的策略。由于bsamzier曲线的特殊性质,整个轨迹及其导数的位置可以直接限定在安全空间内,从而方便了四旋翼飞行器的动力学。该策略可以生成平滑无碰撞的跟踪轨迹,并且具有时间和空间效率。我们进行了模拟和真实世界的实验来验证我们系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信