Enabling a highly-scalable global address space model for petascale computing

V. Tipparaju, E. Aprá, Weikuan Yu, J. Vetter
{"title":"Enabling a highly-scalable global address space model for petascale computing","authors":"V. Tipparaju, E. Aprá, Weikuan Yu, J. Vetter","doi":"10.1145/1787275.1787326","DOIUrl":null,"url":null,"abstract":"Over the past decade, the trajectory to the petascale has been built on increased complexity and scale of the underlying parallel architectures. Meanwhile, software developers have struggled to provide tools that maintain the productivity of computational science teams using these new systems. In this regard, Global Address Space (GAS) programming models provide a straightforward and easy to use addressing model, which can lead to improved productivity. However, the scalability of GAS depends directly on the design and implementation of the runtime system on the target petascale distributed-memory architecture. In this paper, we describe the design, implementation, and optimization of the Aggregate Remote Memory Copy Interface (ARMCI) runtime library on the Cray XT5 2.3 PetaFLOPs computer at Oak Ridge National Laboratory. We optimized our implementation with the flow intimation technique that we have introduced in this paper. Our optimized ARMCI implementation improves scalability of both the Global Arrays (GA) programming model and a real-world chemistry application - NWChem - from small jobs up through 180,000 cores.","PeriodicalId":151791,"journal":{"name":"Proceedings of the 7th ACM international conference on Computing frontiers","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM international conference on Computing frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1787275.1787326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Over the past decade, the trajectory to the petascale has been built on increased complexity and scale of the underlying parallel architectures. Meanwhile, software developers have struggled to provide tools that maintain the productivity of computational science teams using these new systems. In this regard, Global Address Space (GAS) programming models provide a straightforward and easy to use addressing model, which can lead to improved productivity. However, the scalability of GAS depends directly on the design and implementation of the runtime system on the target petascale distributed-memory architecture. In this paper, we describe the design, implementation, and optimization of the Aggregate Remote Memory Copy Interface (ARMCI) runtime library on the Cray XT5 2.3 PetaFLOPs computer at Oak Ridge National Laboratory. We optimized our implementation with the flow intimation technique that we have introduced in this paper. Our optimized ARMCI implementation improves scalability of both the Global Arrays (GA) programming model and a real-world chemistry application - NWChem - from small jobs up through 180,000 cores.
为千兆级计算启用高度可伸缩的全局地址空间模型
在过去的十年中,千兆级的发展轨迹是建立在底层并行架构的复杂性和规模增加的基础上的。与此同时,软件开发人员一直在努力提供工具,以保持使用这些新系统的计算科学团队的生产力。在这方面,全局地址空间(GAS)编程模型提供了一个直接且易于使用的寻址模型,这可以提高生产率。然而,GAS的可伸缩性直接依赖于运行时系统在目标千万亿级分布式内存体系结构上的设计和实现。在本文中,我们描述了在橡树岭国家实验室的Cray XT5 2.3 PetaFLOPs计算机上聚合远程内存复制接口(armi)运行库的设计、实现和优化。我们利用本文介绍的流量提示技术优化了我们的实现。我们优化的ARMCI实现提高了全局阵列(GA)编程模型和实际化学应用(NWChem)的可扩展性,从小型作业到18万个核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信