Numerical solution of 3-D Neuman problem for scalar Helmholtz equation at the bodies of complex shapes

I. Lifanov, I. Lifanov, S. Novikov
{"title":"Numerical solution of 3-D Neuman problem for scalar Helmholtz equation at the bodies of complex shapes","authors":"I. Lifanov, I. Lifanov, S. Novikov","doi":"10.1109/MMET.1996.565728","DOIUrl":null,"url":null,"abstract":"Our paper is concerned with solving the 3D outside boundary Neuman problem for the scalar Helmholtz equation. By means of the double layer potential, this problem reduces to the hypersingular integral equation of the 1-st kind. The numerical method for solving the hypersingular integral equation at bodies of arbitrary form is proposed. This method is a method of discrete vortex type. Comparison of the exact solution for a sphere with the numerical one is carried out. Results of the computation for a cube and for a plate are presented.","PeriodicalId":270641,"journal":{"name":"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.1996.565728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our paper is concerned with solving the 3D outside boundary Neuman problem for the scalar Helmholtz equation. By means of the double layer potential, this problem reduces to the hypersingular integral equation of the 1-st kind. The numerical method for solving the hypersingular integral equation at bodies of arbitrary form is proposed. This method is a method of discrete vortex type. Comparison of the exact solution for a sphere with the numerical one is carried out. Results of the computation for a cube and for a plate are presented.
复杂形状物体上标量亥姆霍兹方程三维诺伊曼问题的数值解
本文研究标量亥姆霍兹方程的三维外边界诺伊曼问题。利用双层势,将该问题简化为第一类超奇异积分方程。提出了求解任意形式物体上的超奇异积分方程的数值方法。该方法是一种离散涡型方法。对球面的精确解与数值解进行了比较。给出了立方体和平板的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信