{"title":"Excellence of function fields of conics","authors":"A. Merkurjev, J. Tignol","doi":"10.4171/LEM/62-3/4-3","DOIUrl":null,"url":null,"abstract":"For every generalized quadratic form or hermitian form over a division algebra, the anisotropic kernel of the form obtained by scalar extension to the function field of a smooth projective conic is defined over the field of constants. The proof does not require any hypothesis on the characteristic.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/62-3/4-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For every generalized quadratic form or hermitian form over a division algebra, the anisotropic kernel of the form obtained by scalar extension to the function field of a smooth projective conic is defined over the field of constants. The proof does not require any hypothesis on the characteristic.