Excellence of function fields of conics

A. Merkurjev, J. Tignol
{"title":"Excellence of function fields of conics","authors":"A. Merkurjev, J. Tignol","doi":"10.4171/LEM/62-3/4-3","DOIUrl":null,"url":null,"abstract":"For every generalized quadratic form or hermitian form over a division algebra, the anisotropic kernel of the form obtained by scalar extension to the function field of a smooth projective conic is defined over the field of constants. The proof does not require any hypothesis on the characteristic.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/62-3/4-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For every generalized quadratic form or hermitian form over a division algebra, the anisotropic kernel of the form obtained by scalar extension to the function field of a smooth projective conic is defined over the field of constants. The proof does not require any hypothesis on the characteristic.
圆锥函数域的卓越性
对于除法代数上的每一个广义二次型或厄米特型,通过标量扩展到光滑射影二次曲线的函数域,在常数域上定义了其各向异性核。证明不需要对特征做任何假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信