EP-BERTGCN: A Simple but Effective Power Equipment Fault Recognition Method

Mingcong Lu, Yusong Zhang, Quan Zheng, Zhenyuan Ma, Liqing Liu, Yongping Xiong, Ruifan Li
{"title":"EP-BERTGCN: A Simple but Effective Power Equipment Fault Recognition Method","authors":"Mingcong Lu, Yusong Zhang, Quan Zheng, Zhenyuan Ma, Liqing Liu, Yongping Xiong, Ruifan Li","doi":"10.1145/3548636.3548646","DOIUrl":null,"url":null,"abstract":"With the advancement of China’s State Grid in recent years, text-based power equipment fault recognition has become an essential tool for power equipment maintenance. The task suffers from the domain gap that exists between the electric power domain and the general natural language processing domain. To improve the recognition performance, we proposed a method that combines pre-trained Bidirectional Encoder Representations from Transformers (BERT) and Graph Convolutional Network (GCN), i.e., Electric Power -BERTGCN. Our EP-BERTGCN first builds the graph among documents and words within documents based on pre-trained BERT. Then, the two softmax outputs with pre-trained BERT and GCNs are combined for final classification results. Extensive experiments show that our method outperforms previous baselines.","PeriodicalId":384376,"journal":{"name":"Proceedings of the 4th International Conference on Information Technology and Computer Communications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Information Technology and Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548636.3548646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the advancement of China’s State Grid in recent years, text-based power equipment fault recognition has become an essential tool for power equipment maintenance. The task suffers from the domain gap that exists between the electric power domain and the general natural language processing domain. To improve the recognition performance, we proposed a method that combines pre-trained Bidirectional Encoder Representations from Transformers (BERT) and Graph Convolutional Network (GCN), i.e., Electric Power -BERTGCN. Our EP-BERTGCN first builds the graph among documents and words within documents based on pre-trained BERT. Then, the two softmax outputs with pre-trained BERT and GCNs are combined for final classification results. Extensive experiments show that our method outperforms previous baselines.
一种简单有效的电力设备故障识别方法
近年来,随着中国国家电网的进步,基于文本的电力设备故障识别已成为电力设备维护的必备工具。该任务存在电力领域与一般自然语言处理领域之间的领域鸿沟。为了提高识别性能,我们提出了一种结合变压器(BERT)和图卷积网络(GCN)(即电力-BERTGCN)的预训练双向编码器表示的方法。我们的EP-BERTGCN首先基于预训练的BERT在文档和文档中的单词之间构建图。然后,结合预训练BERT和GCNs的两个softmax输出,得到最终的分类结果。大量的实验表明,我们的方法优于以前的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信