Surface-Based GICP

M. Vlaminck, H. Luong, W. Philips
{"title":"Surface-Based GICP","authors":"M. Vlaminck, H. Luong, W. Philips","doi":"10.1109/CRV.2018.00044","DOIUrl":null,"url":null,"abstract":"In this paper we present an extension of the Generalized ICP algorithm for the registration of point clouds for use in lidar-based SLAM applications. As opposed to the plane-to-plane cost function, which assumes that each point set is locally planar, we propose to incorporate additional information on the underlying surface into the GICP process. Doing so, we are able to deal better with the artefacts that are typically present in lidar point clouds, including an inhomogeneous and sparse point density, noise and missing data. Experiments on lidar sequences of the KITTI benchmark demonstrate that we are able to substantially reduce the positional error compared to the original GICP algorithm.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present an extension of the Generalized ICP algorithm for the registration of point clouds for use in lidar-based SLAM applications. As opposed to the plane-to-plane cost function, which assumes that each point set is locally planar, we propose to incorporate additional information on the underlying surface into the GICP process. Doing so, we are able to deal better with the artefacts that are typically present in lidar point clouds, including an inhomogeneous and sparse point density, noise and missing data. Experiments on lidar sequences of the KITTI benchmark demonstrate that we are able to substantially reduce the positional error compared to the original GICP algorithm.
基于地表GICP
在本文中,我们提出了一种广义ICP算法的扩展,用于点云的配准,用于基于激光雷达的SLAM应用。与平面到平面的代价函数相反,它假设每个点集都是局部平面的,我们建议将底层表面上的附加信息合并到GICP过程中。这样做,我们能够更好地处理激光雷达点云中通常存在的伪影,包括不均匀和稀疏的点密度、噪声和缺失的数据。在KITTI基准的激光雷达序列上的实验表明,与原始GICP算法相比,我们能够大大降低位置误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信