Dynamic spectrum access with non-stationary Multi-Armed Bandit

Ben Hadj Alaya-Feki, É. Moulines, Alain LeCornec
{"title":"Dynamic spectrum access with non-stationary Multi-Armed Bandit","authors":"Ben Hadj Alaya-Feki, É. Moulines, Alain LeCornec","doi":"10.1109/SPAWC.2008.4641641","DOIUrl":null,"url":null,"abstract":"Dynamic spectrum access (DSA) is an emerging notion in cognitive radio, aiming to improve the spectrum usage with reliable secondary access to the spectral resources. The main challenge in DSA is the detection of spectral opportunities and their efficient utilization without causing interference to the primary users. For this goal, we propose to make use of a reinforcement learning approach: the Multi Armed Bandit (MAB). The MAB approach provides the secondary users with the rules and policies necessary to achieve a tradeoff between exploitation and exploration in DSA. Different MAB strategies are tested on an IEEE802.11 medium access model and evaluated in dynamic environment. Our study shows that the MAB constitute a viable solution for the DSA. Adding to that, the performances of the MAB algorithms can be improved with a finite tuning of the internal parameters.","PeriodicalId":197154,"journal":{"name":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2008.4641641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Dynamic spectrum access (DSA) is an emerging notion in cognitive radio, aiming to improve the spectrum usage with reliable secondary access to the spectral resources. The main challenge in DSA is the detection of spectral opportunities and their efficient utilization without causing interference to the primary users. For this goal, we propose to make use of a reinforcement learning approach: the Multi Armed Bandit (MAB). The MAB approach provides the secondary users with the rules and policies necessary to achieve a tradeoff between exploitation and exploration in DSA. Different MAB strategies are tested on an IEEE802.11 medium access model and evaluated in dynamic environment. Our study shows that the MAB constitute a viable solution for the DSA. Adding to that, the performances of the MAB algorithms can be improved with a finite tuning of the internal parameters.
非平稳多臂强盗的动态频谱接入
动态频谱接入(DSA)是认知无线电领域的一个新兴概念,旨在通过对频谱资源的可靠二次接入来提高频谱利用率。DSA的主要挑战是在不对主要用户造成干扰的情况下检测频谱机会并有效利用它们。为了实现这个目标,我们建议使用一种强化学习方法:Multi - Armed Bandit (MAB)。MAB方法为次要用户提供必要的规则和策略,以实现DSA中开发和探索之间的权衡。在IEEE802.11介质访问模型上对不同的MAB策略进行了测试,并在动态环境中进行了评估。我们的研究表明,MAB是一种可行的DSA解决方案。此外,MAB算法的性能可以通过有限的内部参数调整来提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信