LPV control for autonomous vehicles using a machine learning-based tire pressure estimation

Dániel Fényes, T. Hegedüs, B. Németh, P. Gáspár, D. Koenig, O. Sename
{"title":"LPV control for autonomous vehicles using a machine learning-based tire pressure estimation","authors":"Dániel Fényes, T. Hegedüs, B. Németh, P. Gáspár, D. Koenig, O. Sename","doi":"10.1109/MED48518.2020.9183106","DOIUrl":null,"url":null,"abstract":"The paper presents a data-driven method for tire pressure estimation and an LPV-based control design for autonomous vehicles. The motivation of the research is that the pressures of the tires have high impacts on the lateral dynamics of the vehicle, because the loss of tire pressure may result in degradation in the lateral vehicle motion. First, a machine learning-based estimation algorithm, which uses only signals of on-board sensors, is proposed. Second, an LPV-based lateral control design is proposed, which uses the estimated tire pressure as a scheduling variable. The control is able to handle situations, in which the tire pressure decreases. The efficiency and the operation of the control system is illustrated through a comprehensive simulation example using the high-fidelity simulation software CarMaker.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presents a data-driven method for tire pressure estimation and an LPV-based control design for autonomous vehicles. The motivation of the research is that the pressures of the tires have high impacts on the lateral dynamics of the vehicle, because the loss of tire pressure may result in degradation in the lateral vehicle motion. First, a machine learning-based estimation algorithm, which uses only signals of on-board sensors, is proposed. Second, an LPV-based lateral control design is proposed, which uses the estimated tire pressure as a scheduling variable. The control is able to handle situations, in which the tire pressure decreases. The efficiency and the operation of the control system is illustrated through a comprehensive simulation example using the high-fidelity simulation software CarMaker.
基于机器学习的轮胎压力估计的自动驾驶车辆LPV控制
提出了一种基于数据驱动的自动驾驶汽车胎压估计方法和基于lpv的控制设计。研究的动机是轮胎的压力对车辆的横向动力学有很大的影响,因为轮胎压力的损失可能导致车辆横向运动的退化。首先,提出了一种仅利用车载传感器信号的基于机器学习的估计算法。其次,提出了一种以估计轮胎压力为调度变量的基于lpv的横向控制设计方法。控制系统能够处理轮胎压力下降的情况。通过高保真仿真软件maker的综合仿真实例,说明了控制系统的效率和运行情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信