{"title":"Vectorized data processing on the cell broadband engine","authors":"S. Héman, N. Nes, M. Zukowski, P. Boncz","doi":"10.1145/1363189.1363195","DOIUrl":null,"url":null,"abstract":"In this work, we research the suitability of the Cell Broadband Engine for database processing. We start by outlining the main architectural features of Cell and use micro-benchmarks to characterize the latency and throughput of its memory infrastructure. Then, we discuss the challenges of porting RDBMS software to Cell: (i) all computations need to SIMD-ized, (ii) all performance-critical branches need to be eliminated, (iii) a very small and hard limit on program code size should be respected.\n While we argue that conventional database implementations, i.e. row-stores with Volcano-style tuple pipelining, are a hard fit to Cell, it turns out that the three challenges are quite easily met in databases that use column-wise processing. We managed to implement a proof-of-concept port of the vectorized query processing model of MonetDB/X100 on Cell by running the operator pipeline on the PowerPC, but having it execute the vectorized primitives (data parallel) on its SPE cores. A performance evaluation on TPC-H Q1 shows that vectorized query processing on Cell can beat conventional PowerPC and Itanium2 CPUs by a factor 20.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1363189.1363195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
In this work, we research the suitability of the Cell Broadband Engine for database processing. We start by outlining the main architectural features of Cell and use micro-benchmarks to characterize the latency and throughput of its memory infrastructure. Then, we discuss the challenges of porting RDBMS software to Cell: (i) all computations need to SIMD-ized, (ii) all performance-critical branches need to be eliminated, (iii) a very small and hard limit on program code size should be respected.
While we argue that conventional database implementations, i.e. row-stores with Volcano-style tuple pipelining, are a hard fit to Cell, it turns out that the three challenges are quite easily met in databases that use column-wise processing. We managed to implement a proof-of-concept port of the vectorized query processing model of MonetDB/X100 on Cell by running the operator pipeline on the PowerPC, but having it execute the vectorized primitives (data parallel) on its SPE cores. A performance evaluation on TPC-H Q1 shows that vectorized query processing on Cell can beat conventional PowerPC and Itanium2 CPUs by a factor 20.