Vectorized data processing on the cell broadband engine

S. Héman, N. Nes, M. Zukowski, P. Boncz
{"title":"Vectorized data processing on the cell broadband engine","authors":"S. Héman, N. Nes, M. Zukowski, P. Boncz","doi":"10.1145/1363189.1363195","DOIUrl":null,"url":null,"abstract":"In this work, we research the suitability of the Cell Broadband Engine for database processing. We start by outlining the main architectural features of Cell and use micro-benchmarks to characterize the latency and throughput of its memory infrastructure. Then, we discuss the challenges of porting RDBMS software to Cell: (i) all computations need to SIMD-ized, (ii) all performance-critical branches need to be eliminated, (iii) a very small and hard limit on program code size should be respected.\n While we argue that conventional database implementations, i.e. row-stores with Volcano-style tuple pipelining, are a hard fit to Cell, it turns out that the three challenges are quite easily met in databases that use column-wise processing. We managed to implement a proof-of-concept port of the vectorized query processing model of MonetDB/X100 on Cell by running the operator pipeline on the PowerPC, but having it execute the vectorized primitives (data parallel) on its SPE cores. A performance evaluation on TPC-H Q1 shows that vectorized query processing on Cell can beat conventional PowerPC and Itanium2 CPUs by a factor 20.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1363189.1363195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

In this work, we research the suitability of the Cell Broadband Engine for database processing. We start by outlining the main architectural features of Cell and use micro-benchmarks to characterize the latency and throughput of its memory infrastructure. Then, we discuss the challenges of porting RDBMS software to Cell: (i) all computations need to SIMD-ized, (ii) all performance-critical branches need to be eliminated, (iii) a very small and hard limit on program code size should be respected. While we argue that conventional database implementations, i.e. row-stores with Volcano-style tuple pipelining, are a hard fit to Cell, it turns out that the three challenges are quite easily met in databases that use column-wise processing. We managed to implement a proof-of-concept port of the vectorized query processing model of MonetDB/X100 on Cell by running the operator pipeline on the PowerPC, but having it execute the vectorized primitives (data parallel) on its SPE cores. A performance evaluation on TPC-H Q1 shows that vectorized query processing on Cell can beat conventional PowerPC and Itanium2 CPUs by a factor 20.
基于小区宽带引擎的矢量化数据处理
在这项工作中,我们研究了蜂窝宽带引擎对数据库处理的适用性。我们首先概述Cell的主要架构特性,并使用微基准测试来表征其内存基础设施的延迟和吞吐量。然后,我们讨论将RDBMS软件移植到Cell的挑战:(i)所有计算都需要simd化,(ii)所有性能关键分支都需要消除,(iii)应该尊重对程序代码大小的非常小的硬限制。虽然我们认为传统的数据库实现,例如使用volcano风格的元组管道的行存储,很难适合Cell,但事实证明,在使用列处理的数据库中,这三个挑战很容易满足。我们设法在Cell上实现了MonetDB/X100的向量化查询处理模型的概念验证端口,方法是在PowerPC上运行操作符管道,但让它在其SPE内核上执行向量化原语(数据并行)。对TPC-H Q1的性能评估表明,Cell上的向量化查询处理可以比传统的PowerPC和Itanium2 cpu高出20倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信