Half Step Numerical Method for Solution of Second Order Initial Value Problems

O. Adebayo, Edaogbogun Kikelomo
{"title":"Half Step Numerical Method for Solution of Second Order Initial Value Problems","authors":"O. Adebayo, Edaogbogun Kikelomo","doi":"10.32861/AJAMS.72.77.81","DOIUrl":null,"url":null,"abstract":"This paper presents a half step numerical method for solving directly general second order initial value problems. The scheme is developed via collocation and interpolation technique invoked on power series polynomial. The proposed method is consistent, zero stable, order four and three. This method can estimate the approximate solution at both step and off step points simultaneously by using variable step size. Numerical results are given to show the efficiency of the proposed scheme over some existing schemes of same and higher order.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/AJAMS.72.77.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a half step numerical method for solving directly general second order initial value problems. The scheme is developed via collocation and interpolation technique invoked on power series polynomial. The proposed method is consistent, zero stable, order four and three. This method can estimate the approximate solution at both step and off step points simultaneously by using variable step size. Numerical results are given to show the efficiency of the proposed scheme over some existing schemes of same and higher order.
二阶初值问题的半步数值解法
本文给出了直接求解一般二阶初值问题的半步数值方法。该方案采用幂级数多项式的配置和插值技术。该方法具有一致性、零稳定、四阶和三阶的特点。该方法采用变步长方法,可以同时估计步长点和非步长点的近似解。数值结果表明,该方法比现有的一些相同阶和更高阶的方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信