Interval Evaluation of Stationary State Probabilities for Markov Set-Chain Models

L. Lyubchyk, Galyna Grinberg, Maria Lubchick, A. Galuza, O. Akhiiezer
{"title":"Interval Evaluation of Stationary State Probabilities for Markov Set-Chain Models","authors":"L. Lyubchyk, Galyna Grinberg, Maria Lubchick, A. Galuza, O. Akhiiezer","doi":"10.1109/ACIT49673.2020.9208932","DOIUrl":null,"url":null,"abstract":"Interval estimation problem for stationary state probability distribution of set-chain Markov model uncertainties of transition matrix parameters is considered. To obtain final probability vector interval estimates, an optimization approach is proposed using regularized Lagrange function. To solve the obtained regularized bilinear programming problem, computational gradient algorithms are used with ensures the stability of resulting estimates. An example of Markov model of a Bonus-Malus system with interval uncertainties of claim flow intensity is presented.","PeriodicalId":372744,"journal":{"name":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT49673.2020.9208932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Interval estimation problem for stationary state probability distribution of set-chain Markov model uncertainties of transition matrix parameters is considered. To obtain final probability vector interval estimates, an optimization approach is proposed using regularized Lagrange function. To solve the obtained regularized bilinear programming problem, computational gradient algorithms are used with ensures the stability of resulting estimates. An example of Markov model of a Bonus-Malus system with interval uncertainties of claim flow intensity is presented.
马尔可夫集链模型稳态概率的区间估计
研究了转移矩阵参数不确定性的集链马尔可夫模型稳态概率分布的区间估计问题。为了得到最终的概率向量区间估计,提出了一种正则化拉格朗日函数的优化方法。为了求解得到的正则双线性规划问题,采用了计算梯度算法,保证了估计结果的稳定性。给出了具有索赔流强度区间不确定性的奖惩系统的马尔可夫模型的一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信