IoT Enabled Condition Monitoring of Low Voltage Motors using Fuzzy Inference System

O. Choudhary, Supriya Jaiswal, S. Das
{"title":"IoT Enabled Condition Monitoring of Low Voltage Motors using Fuzzy Inference System","authors":"O. Choudhary, Supriya Jaiswal, S. Das","doi":"10.1109/catcon52335.2021.9670486","DOIUrl":null,"url":null,"abstract":"In the revolutionized industry 4.0 vision, the predictive maintenance of the machines make the maintenance easy and smart using Internet of Things (IoT). It helps to improve the overall machine performance, capacity, sustainability and user safety. IoT serves as a well- planned structure for condition monitoring with the flexibility to integrate more number of devices to be monitored and controlled remotely. In this paper, a real-time condition monitoring prototype of low voltage industrial motor is developed. The prototype majorly monitors three vital parameters, temperature, vibration and speed of the motor using suitable sensors connected to Zigbee module sending data wirelessly to the remote end using IoT. These data are then fed from Thingspeak server to the Fuzzy Inference System (FIS) to estimate the health of the motor. The complete devised prototype performs the function of monitoring, processing data, decision making and data storage remotely without any considerable user intervention.","PeriodicalId":162130,"journal":{"name":"2021 IEEE 5th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 5th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/catcon52335.2021.9670486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the revolutionized industry 4.0 vision, the predictive maintenance of the machines make the maintenance easy and smart using Internet of Things (IoT). It helps to improve the overall machine performance, capacity, sustainability and user safety. IoT serves as a well- planned structure for condition monitoring with the flexibility to integrate more number of devices to be monitored and controlled remotely. In this paper, a real-time condition monitoring prototype of low voltage industrial motor is developed. The prototype majorly monitors three vital parameters, temperature, vibration and speed of the motor using suitable sensors connected to Zigbee module sending data wirelessly to the remote end using IoT. These data are then fed from Thingspeak server to the Fuzzy Inference System (FIS) to estimate the health of the motor. The complete devised prototype performs the function of monitoring, processing data, decision making and data storage remotely without any considerable user intervention.
使用模糊推理系统的低压电机物联网状态监测
在革命性的工业4.0愿景中,机器的预测性维护使使用物联网(IoT)的维护变得简单而智能。它有助于提高机器的整体性能、容量、可持续性和用户安全性。物联网作为一个精心规划的状态监测结构,具有灵活性,可以集成更多的设备进行远程监测和控制。本文研制了一种低压工业电机状态实时监测样机。该原型主要使用连接到Zigbee模块的合适传感器来监控电机的三个重要参数:温度、振动和速度,通过物联网将数据无线发送到远程端。然后将这些数据从Thingspeak服务器馈送到模糊推理系统(FIS),以估计电机的健康状况。完整的设计原型完成了远程监控、数据处理、决策和数据存储等功能,无需任何用户干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信