GTfold

Amrita Mathuriya, David A. Bader, Christine E. Heitsch, Stephen C. Harvey
{"title":"GTfold","authors":"Amrita Mathuriya, David A. Bader, Christine E. Heitsch, Stephen C. Harvey","doi":"10.1145/1529282.1529497","DOIUrl":null,"url":null,"abstract":"The prediction of the correct secondary structures of large RNAs is one of the unsolved challenges of computational molecular biology. Among the major obstacles is the fact that accurate calculations scale as O(n4), so the computational requirements become prohibitive as the length increases. Existing folding programs implement heuristics and approximations to overcome these limitations. We present a new parallel multicore and scalable program called GTfold, which is one to two orders of magnitude faster than the de facto standard programs and achieves comparable accuracy of prediction. Development of GTfold opens up a new path for the algorithmic improvements and application of an improved thermodynamic model to increase the prediction accuracy.\n In this paper we analyze the algorithm's concurrency and describe the parallelism for a shared memory environment such as a symmetric multiprocessor or multicore chip. In a remarkable demonstration, GTfold now optimally folds 11 picornaviral RNA sequences ranging from 7100 to 8200 nucleotides in 8 minutes, compared with the two months it took in a previous study. We are seeing a paradigm shift to multicore chips and parallelism must be explicitly addressed to continue gaining performance with each new generation of systems. We also show that the exact algorithms like internal loop speedup can be implemented with our method in an affordable amount of time. GTfold is freely available as open source from our website.","PeriodicalId":339815,"journal":{"name":"Proceedings of the 2009 ACM symposium on Applied Computing - SAC '09","volume":"3 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM symposium on Applied Computing - SAC '09","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1529282.1529497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

The prediction of the correct secondary structures of large RNAs is one of the unsolved challenges of computational molecular biology. Among the major obstacles is the fact that accurate calculations scale as O(n4), so the computational requirements become prohibitive as the length increases. Existing folding programs implement heuristics and approximations to overcome these limitations. We present a new parallel multicore and scalable program called GTfold, which is one to two orders of magnitude faster than the de facto standard programs and achieves comparable accuracy of prediction. Development of GTfold opens up a new path for the algorithmic improvements and application of an improved thermodynamic model to increase the prediction accuracy. In this paper we analyze the algorithm's concurrency and describe the parallelism for a shared memory environment such as a symmetric multiprocessor or multicore chip. In a remarkable demonstration, GTfold now optimally folds 11 picornaviral RNA sequences ranging from 7100 to 8200 nucleotides in 8 minutes, compared with the two months it took in a previous study. We are seeing a paradigm shift to multicore chips and parallelism must be explicitly addressed to continue gaining performance with each new generation of systems. We also show that the exact algorithms like internal loop speedup can be implemented with our method in an affordable amount of time. GTfold is freely available as open source from our website.
GTfold
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信