Xuan Sun, H. Kashima, Ryota Tomioka, N. Ueda, Ping Li
{"title":"A New Multi-task Learning Method for Personalized Activity Recognition","authors":"Xuan Sun, H. Kashima, Ryota Tomioka, N. Ueda, Ping Li","doi":"10.1109/ICDM.2011.14","DOIUrl":null,"url":null,"abstract":"Personalized activity recognition usually faces the problem of data sparseness. We aim at improving accuracy of personalized activity recognition by incorporating the information from other persons. We propose a new online multi-task learning method for personalized activity recognition. The proposed online multi-task learning method automatically learns the ``transfer-factors\" (similarities) among different tasks (i.e., among different persons in our case). Experiments demonstrate that the proposed method significantly outperforms existing methods. The novelty of this paper is twofold: (1) A new multi-task learning framework, which can naturally learn similarities among tasks, (2) To our knowledge, this is the first study of large-scale personalized activity recognition.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"11 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Personalized activity recognition usually faces the problem of data sparseness. We aim at improving accuracy of personalized activity recognition by incorporating the information from other persons. We propose a new online multi-task learning method for personalized activity recognition. The proposed online multi-task learning method automatically learns the ``transfer-factors" (similarities) among different tasks (i.e., among different persons in our case). Experiments demonstrate that the proposed method significantly outperforms existing methods. The novelty of this paper is twofold: (1) A new multi-task learning framework, which can naturally learn similarities among tasks, (2) To our knowledge, this is the first study of large-scale personalized activity recognition.