A New Multi-task Learning Method for Personalized Activity Recognition

Xuan Sun, H. Kashima, Ryota Tomioka, N. Ueda, Ping Li
{"title":"A New Multi-task Learning Method for Personalized Activity Recognition","authors":"Xuan Sun, H. Kashima, Ryota Tomioka, N. Ueda, Ping Li","doi":"10.1109/ICDM.2011.14","DOIUrl":null,"url":null,"abstract":"Personalized activity recognition usually faces the problem of data sparseness. We aim at improving accuracy of personalized activity recognition by incorporating the information from other persons. We propose a new online multi-task learning method for personalized activity recognition. The proposed online multi-task learning method automatically learns the ``transfer-factors\" (similarities) among different tasks (i.e., among different persons in our case). Experiments demonstrate that the proposed method significantly outperforms existing methods. The novelty of this paper is twofold: (1) A new multi-task learning framework, which can naturally learn similarities among tasks, (2) To our knowledge, this is the first study of large-scale personalized activity recognition.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"11 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Personalized activity recognition usually faces the problem of data sparseness. We aim at improving accuracy of personalized activity recognition by incorporating the information from other persons. We propose a new online multi-task learning method for personalized activity recognition. The proposed online multi-task learning method automatically learns the ``transfer-factors" (similarities) among different tasks (i.e., among different persons in our case). Experiments demonstrate that the proposed method significantly outperforms existing methods. The novelty of this paper is twofold: (1) A new multi-task learning framework, which can naturally learn similarities among tasks, (2) To our knowledge, this is the first study of large-scale personalized activity recognition.
个性化活动识别的多任务学习新方法
个性化活动识别通常面临数据稀疏的问题。我们的目标是通过整合其他人的信息来提高个性化活动识别的准确性。我们提出了一种新的在线多任务学习方法用于个性化活动识别。提出的在线多任务学习方法自动学习不同任务之间(即在我们的案例中不同的人之间)的“迁移因素”(相似性)。实验表明,该方法明显优于现有方法。本文的新颖之处在于:(1)一个新的多任务学习框架,可以自然地学习任务之间的相似性;(2)据我们所知,这是第一个大规模个性化活动识别的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信