Detecting and Interpreting Variable Interactions in Observational Ornithology Data

Daria Sorokina, R. Caruana, Mirek Riedewald, W. Hochachka, S. Kelling
{"title":"Detecting and Interpreting Variable Interactions in Observational Ornithology Data","authors":"Daria Sorokina, R. Caruana, Mirek Riedewald, W. Hochachka, S. Kelling","doi":"10.1109/ICDMW.2009.84","DOIUrl":null,"url":null,"abstract":"In this paper we demonstrate a practical approach to interaction detection on real data describing the abundance of different species of birds in the prairies east of the southern Rocky Mountains. This data is very noisy---predictive models built from it perform only slightly better than baseline. Previous approaches for interaction detection, including a recently proposed algorithm based on Additive Groves, often do not work well on such noisy data for a number of reasons. We describe the issues that appear when working with such data sets and suggest solutions to them. In the end, we discuss results of our analysis for several bird species.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we demonstrate a practical approach to interaction detection on real data describing the abundance of different species of birds in the prairies east of the southern Rocky Mountains. This data is very noisy---predictive models built from it perform only slightly better than baseline. Previous approaches for interaction detection, including a recently proposed algorithm based on Additive Groves, often do not work well on such noisy data for a number of reasons. We describe the issues that appear when working with such data sets and suggest solutions to them. In the end, we discuss results of our analysis for several bird species.
探测和解释观测鸟类数据中的可变相互作用
在本文中,我们展示了一种实用的方法来相互作用检测的真实数据描述不同种类的鸟类在南落基山脉东部的草原丰度。这些数据非常嘈杂——基于它建立的预测模型只比基线稍微好一点。以前的相互作用检测方法,包括最近提出的基于加性格罗夫的算法,由于许多原因往往不能很好地处理这种噪声数据。我们描述了在处理这些数据集时出现的问题,并提出了解决方案。最后,讨论了几种鸟类的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信