Dual Camera Based High Spatio-Temporal Resolution Video Generation For Wide Area Surveillance

H. U. Suluhan, H. Ateş, B. Gunturk
{"title":"Dual Camera Based High Spatio-Temporal Resolution Video Generation For Wide Area Surveillance","authors":"H. U. Suluhan, H. Ateş, B. Gunturk","doi":"10.1109/AVSS56176.2022.9959711","DOIUrl":null,"url":null,"abstract":"Wide area surveillance (WAS) requires high spatiotemporal resolution (HSTR) video for better precision. As an alternative to expensive WAS systems, low-cost hybrid imaging systems can be used. This paper presents the usage of multiple video feeds for the generation of HSTR video as an extension of reference based super resolution (RefSR). One feed captures video at high spatial resolution with low frame rate (HSLF) while the other captures low spatial resolution and high frame rate (LSHF) video simultaneously for the same scene. The main purpose is to create an HSTR video from the fusion of HSLF and LSHF videos. In this paper we propose an end-to-end trainable deep network that performs optical flow (OF) estimation and frame reconstruction by combining inputs from both video feeds. The proposed architecture provides significant improvement over existing video frame interpolation and RefSR techniques in terms of PSNR and SSIM metrics and can be deployed on drones with dual cameras.","PeriodicalId":408581,"journal":{"name":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"26 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS56176.2022.9959711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wide area surveillance (WAS) requires high spatiotemporal resolution (HSTR) video for better precision. As an alternative to expensive WAS systems, low-cost hybrid imaging systems can be used. This paper presents the usage of multiple video feeds for the generation of HSTR video as an extension of reference based super resolution (RefSR). One feed captures video at high spatial resolution with low frame rate (HSLF) while the other captures low spatial resolution and high frame rate (LSHF) video simultaneously for the same scene. The main purpose is to create an HSTR video from the fusion of HSLF and LSHF videos. In this paper we propose an end-to-end trainable deep network that performs optical flow (OF) estimation and frame reconstruction by combining inputs from both video feeds. The proposed architecture provides significant improvement over existing video frame interpolation and RefSR techniques in terms of PSNR and SSIM metrics and can be deployed on drones with dual cameras.
基于双摄像头的广域监控高时空分辨率视频生成
广域监控(WAS)需要高时空分辨率(HSTR)视频以获得更高的精度。作为昂贵的WAS系统的替代方案,可以使用低成本的混合成像系统。作为基于参考的超分辨率(RefSR)的扩展,本文提出了使用多视频源生成HSTR视频的方法。一个源捕获低帧率(HSLF)的高空间分辨率视频,而另一个源同时捕获同一场景的低空间分辨率和高帧率(LSHF)视频。主要目的是通过HSLF和LSHF视频的融合来创建HSTR视频。在本文中,我们提出了一个端到端可训练的深度网络,通过结合两个视频源的输入来进行光流估计和帧重建。所提出的架构在PSNR和SSIM指标方面对现有的视频帧插值和RefSR技术进行了重大改进,可以部署在带有双摄像头的无人机上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信