Sample-Efficient Kalman Filter with Intermittent Measurement for Dynamical System

Chenyang Li, Sen Zhang, Shixin Liu
{"title":"Sample-Efficient Kalman Filter with Intermittent Measurement for Dynamical System","authors":"Chenyang Li, Sen Zhang, Shixin Liu","doi":"10.1109/YAC57282.2022.10023876","DOIUrl":null,"url":null,"abstract":"This paper investigates the issue of sample-efficient Kalman filter with intermittent measurement for dynamical system over wireless sensor networks, which only transmits measured values to the estimator when the certain conditions occurs, thereby reducing communication costs. Under the linear unbiased minimum variance norm, the event-triggered Kalman filter with intermittent measurement for dynamical system is presented, where the optimal filtering gain could be gained through minimizing the estimated error covariance matrices. In addition, the stability of the system filtering error could be analyzed via making use of the Lyapunov-based method. Eventually, the filter’s effectiveness is verified by numerical examples.","PeriodicalId":272227,"journal":{"name":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC57282.2022.10023876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the issue of sample-efficient Kalman filter with intermittent measurement for dynamical system over wireless sensor networks, which only transmits measured values to the estimator when the certain conditions occurs, thereby reducing communication costs. Under the linear unbiased minimum variance norm, the event-triggered Kalman filter with intermittent measurement for dynamical system is presented, where the optimal filtering gain could be gained through minimizing the estimated error covariance matrices. In addition, the stability of the system filtering error could be analyzed via making use of the Lyapunov-based method. Eventually, the filter’s effectiveness is verified by numerical examples.
动态系统间歇测量的高效采样卡尔曼滤波
本文研究了无线传感器网络动态系统间歇测量的采样高效卡尔曼滤波器问题,该滤波器仅在特定条件下才将测量值传输给估计器,从而降低了通信成本。在线性无偏最小方差范数下,提出了一种具有间歇测量的动态系统事件触发卡尔曼滤波器,该滤波器通过最小化估计误差协方差矩阵来获得最优滤波增益。此外,利用基于李亚普诺夫的方法分析了系统滤波误差的稳定性。最后,通过数值算例验证了该滤波器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信