{"title":"Long-distance Deterministic Transmission among TSN Networks: Converging CQF and DIP","authors":"Wei-Peng Tan, Binwei Wu","doi":"10.1109/ICNP52444.2021.9651955","DOIUrl":null,"url":null,"abstract":"With the development of 5G, innovative applications requiring bounded transmission delays and zero packet loss emerge, e.g., AR, industrial automation, and smart grid. In this circumstance, time-sensitive networking (TSN) is proposed, which addresses the deterministic transmission in the local area networks. Nevertheless, TSN is essentially a Layer 2 technique, which cannot provide deterministic transmission on a large geographic area. To solve this problem, this paper proposes a hierarchical network for the end-to-end deterministic transmission. In the proposed network, we leverage CQF (i.e., one of the most efficient TSN mechanisms) in the access networks which aggregates the traffic from end-devices. Meanwhile, in the core network, we exploit the DIP (i.e., a well-known deterministic networking mechanism for backbone networks) for long-distance deterministic transmission. We design the cycle alignment mechanism to enable seamless and deterministic transmission among hierarchical networks. A joint schedule is also formulated, which introduces the traffic shaping at the network edge to maximize the network throughput. Experimental simulations show that the proposed network can achieve end-to-end deterministic transmission, even in the highly-load scenarios.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
With the development of 5G, innovative applications requiring bounded transmission delays and zero packet loss emerge, e.g., AR, industrial automation, and smart grid. In this circumstance, time-sensitive networking (TSN) is proposed, which addresses the deterministic transmission in the local area networks. Nevertheless, TSN is essentially a Layer 2 technique, which cannot provide deterministic transmission on a large geographic area. To solve this problem, this paper proposes a hierarchical network for the end-to-end deterministic transmission. In the proposed network, we leverage CQF (i.e., one of the most efficient TSN mechanisms) in the access networks which aggregates the traffic from end-devices. Meanwhile, in the core network, we exploit the DIP (i.e., a well-known deterministic networking mechanism for backbone networks) for long-distance deterministic transmission. We design the cycle alignment mechanism to enable seamless and deterministic transmission among hierarchical networks. A joint schedule is also formulated, which introduces the traffic shaping at the network edge to maximize the network throughput. Experimental simulations show that the proposed network can achieve end-to-end deterministic transmission, even in the highly-load scenarios.