Successes

A. Duncan, M. Janssen
{"title":"Successes","authors":"A. Duncan, M. Janssen","doi":"10.1093/oso/9780198845478.003.0006","DOIUrl":null,"url":null,"abstract":"The set of principles formulated in 1915-1918, and now collectively called the old quantum theory, were successfully applied to a number of problems in atomic and X-ray spectroscopy. The three most notable successes are all associated with the Munich school headed by Arnold Sommerfeld. First, there was the derivation of a relativistic fine-structure formula which predicted splittings of stationary state energies for orbits of varying eccentricity at a given principal quantum number. These splittings were empirically verified by Paschen for ionized helium, and constituted the first quantitative confirmation of the special relativistic mechanics introduced by Einstein a decade earlier. The relativistic fine-structure formula was also applied successfully to the splitting of lines in the X-ray spectra of atoms of widely varying atomic number. Finally, the principles of the old quantum theory (in particular, the use of Schwarzschild quantization in combination with Hamilton-Jacobi methods of classical mechanics) were successfully applied to explain the first order splitting spectral lines in the presence of an external electric field (Stark effect).","PeriodicalId":192673,"journal":{"name":"Constructing Quantum Mechanics","volume":"452 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructing Quantum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198845478.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The set of principles formulated in 1915-1918, and now collectively called the old quantum theory, were successfully applied to a number of problems in atomic and X-ray spectroscopy. The three most notable successes are all associated with the Munich school headed by Arnold Sommerfeld. First, there was the derivation of a relativistic fine-structure formula which predicted splittings of stationary state energies for orbits of varying eccentricity at a given principal quantum number. These splittings were empirically verified by Paschen for ionized helium, and constituted the first quantitative confirmation of the special relativistic mechanics introduced by Einstein a decade earlier. The relativistic fine-structure formula was also applied successfully to the splitting of lines in the X-ray spectra of atoms of widely varying atomic number. Finally, the principles of the old quantum theory (in particular, the use of Schwarzschild quantization in combination with Hamilton-Jacobi methods of classical mechanics) were successfully applied to explain the first order splitting spectral lines in the presence of an external electric field (Stark effect).
成功
1915年至1918年制定的一套原理,现在统称为旧量子理论,成功地应用于原子和x射线光谱学中的许多问题。最引人注目的三个成功案例都与阿诺德•萨默菲尔德(Arnold Sommerfeld)领导的慕尼黑学校有关。首先,推导了一个相对论精细结构公式,该公式预测了在给定主量子数下,不同偏心率轨道的稳态能量分裂。这些分裂由Paschen对电离氦进行了经验验证,并构成了爱因斯坦十年前引入的狭义相对论力学的第一个定量证实。相对论精细结构公式也成功地应用于原子序数变化很大的原子的x射线谱线的分裂。最后,旧量子理论的原理(特别是史瓦西量子化与经典力学的哈密顿-雅可比方法相结合的使用)被成功地应用于解释存在外电场下的一阶分裂谱线(斯塔克效应)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信