New gradient descriptor for keyword spotting in handwritten documents

Mohamed Lamine Bouibed, H. Nemmour, Y. Chibani
{"title":"New gradient descriptor for keyword spotting in handwritten documents","authors":"Mohamed Lamine Bouibed, H. Nemmour, Y. Chibani","doi":"10.1109/ATSIP.2017.8075595","DOIUrl":null,"url":null,"abstract":"In this work, we propose a new descriptor that is called Gradient Local Binary Patterns (GLBP) for automatic keyword spotting in handwritten documents. GLBP is a gradient feature that improves the Histogram of Oriented Gradients (HOG) by calculating the gradient information at transitions of the Local Binary Pattern code. For the matching step, we use the Euclidian Distance and the Cosine Similarity. To show GLBP's performance, we used a Benchmark dataset which contains 100 documents written if 4 languages, from those documents 300 query were extracted to be spotted. The results obtained highlight the effectiveness of the proposed descriptor.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we propose a new descriptor that is called Gradient Local Binary Patterns (GLBP) for automatic keyword spotting in handwritten documents. GLBP is a gradient feature that improves the Histogram of Oriented Gradients (HOG) by calculating the gradient information at transitions of the Local Binary Pattern code. For the matching step, we use the Euclidian Distance and the Cosine Similarity. To show GLBP's performance, we used a Benchmark dataset which contains 100 documents written if 4 languages, from those documents 300 query were extracted to be spotted. The results obtained highlight the effectiveness of the proposed descriptor.
新的梯度描述符,用于手写文档中的关键字定位
在这项工作中,我们提出了一种新的描述符,称为梯度局部二进制模式(GLBP),用于手写文档中的自动关键字识别。GLBP是一种梯度特征,它通过计算局部二值模式码转换处的梯度信息来改进定向梯度直方图(HOG)。对于匹配步骤,我们使用欧几里德距离和余弦相似度。为了展示GLBP的性能,我们使用了一个基准数据集,该数据集包含100个用4种语言编写的文档,从这些文档中提取了300个查询来进行标记。得到的结果突出了所提描述符的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信