Hollow AFM Cantilever with Holes

W. Cha, Matthew Campbell, Akshat Jain, I. Bargatin
{"title":"Hollow AFM Cantilever with Holes","authors":"W. Cha, Matthew Campbell, Akshat Jain, I. Bargatin","doi":"10.3390/MICROMACHINES2021-09544","DOIUrl":null,"url":null,"abstract":"Since its invention, atomic force microscopy (AFM) has enhanced our understanding of physical and biological systems at sub-micrometer scales. As the performance of AFM depends greatly on the properties of the cantilevers, many works have been done to improving cantilevers by means of modifying their geometries via lithography [1] and ion-beam milling [2,3] that primarily involved opening areas on the cantilever’s face, resulting in high resonant frequency, low spring constant, and low hydrodynamic damping. Similar improvements were achieved using a hollow beam cantilever with nanoscale wall thickness [4]. In fact, the combination of these two approaches (in-plane opening and hollow beam) can result in unique metamaterial structures with tunable properties [5], but it has not been explored for AFM application. \nIn this work, we explore the hollow AFM cantilevers with in-plane modifications. We accomplished this by (1) taking a commercial solid silicon cantilever, (2) making a different number of holes on the face using pulsed laser micromachining, and (3) coating them with alumina using atomic layer deposition and etching the internal silicon that results in a hollow probe with holes. We present the effects of these modifications on the cantilever’s resonant frequency, quality factor, and spring constant in air. This work provides an insight into strategies for tuning cantilever’s properties for both flexural and torsional modes. \nReferences: \n[1] Nilsen, M.; Port, F.; Roos, M.; Gottschalk, K.-E.; Strehle, S. Journal of Micromechanics and Microengineering 2019, 29, (2), 025014. \n[2] Bull, M. S.; Sullan, R. M. A.; Li, H.; Perkins, T. T. ACS Nano 2014, 8, (5), 4984-4995. \n[3] Hodges, A. R.; Bussmann, K. M.; Hoh, J. H. Review of Scientific Instruments 2001, 72, (10), 3880-3883. \n[4] Cha, W.; Nicaise, S.; Lilley, D.; Lin, C.; Bargatin, I. Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, South Carolina, 2018; Transducer Research Foundation: Hilton Head Island, South Carolina, pp 232-233. \n[5] Lin, C.; Nicaise, S. M.; Lilley, D. E.; Cortes, J.; Jiao, P.; Singh, J.; Azadi, M.; Lopez, G. G.; Metzler, M.; Purohit, P. K.; Bargatin, I. Nature Communications 2018, 9, (1), 4442. \n[5] C. Lin, S. M. Nicaise, D. E. Lilley, J. Cortes, P. Jiao, J. Singh, et al., \"Nanocardboard as a nanoscale analog of hollow sandwich plates,\" Nature Communications, vol. 9, p. 4442, 2018/10/25 2018.","PeriodicalId":137788,"journal":{"name":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MICROMACHINES2021-09544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since its invention, atomic force microscopy (AFM) has enhanced our understanding of physical and biological systems at sub-micrometer scales. As the performance of AFM depends greatly on the properties of the cantilevers, many works have been done to improving cantilevers by means of modifying their geometries via lithography [1] and ion-beam milling [2,3] that primarily involved opening areas on the cantilever’s face, resulting in high resonant frequency, low spring constant, and low hydrodynamic damping. Similar improvements were achieved using a hollow beam cantilever with nanoscale wall thickness [4]. In fact, the combination of these two approaches (in-plane opening and hollow beam) can result in unique metamaterial structures with tunable properties [5], but it has not been explored for AFM application. In this work, we explore the hollow AFM cantilevers with in-plane modifications. We accomplished this by (1) taking a commercial solid silicon cantilever, (2) making a different number of holes on the face using pulsed laser micromachining, and (3) coating them with alumina using atomic layer deposition and etching the internal silicon that results in a hollow probe with holes. We present the effects of these modifications on the cantilever’s resonant frequency, quality factor, and spring constant in air. This work provides an insight into strategies for tuning cantilever’s properties for both flexural and torsional modes. References: [1] Nilsen, M.; Port, F.; Roos, M.; Gottschalk, K.-E.; Strehle, S. Journal of Micromechanics and Microengineering 2019, 29, (2), 025014. [2] Bull, M. S.; Sullan, R. M. A.; Li, H.; Perkins, T. T. ACS Nano 2014, 8, (5), 4984-4995. [3] Hodges, A. R.; Bussmann, K. M.; Hoh, J. H. Review of Scientific Instruments 2001, 72, (10), 3880-3883. [4] Cha, W.; Nicaise, S.; Lilley, D.; Lin, C.; Bargatin, I. Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, South Carolina, 2018; Transducer Research Foundation: Hilton Head Island, South Carolina, pp 232-233. [5] Lin, C.; Nicaise, S. M.; Lilley, D. E.; Cortes, J.; Jiao, P.; Singh, J.; Azadi, M.; Lopez, G. G.; Metzler, M.; Purohit, P. K.; Bargatin, I. Nature Communications 2018, 9, (1), 4442. [5] C. Lin, S. M. Nicaise, D. E. Lilley, J. Cortes, P. Jiao, J. Singh, et al., "Nanocardboard as a nanoscale analog of hollow sandwich plates," Nature Communications, vol. 9, p. 4442, 2018/10/25 2018.
空心AFM悬臂带孔
自发明以来,原子力显微镜(AFM)增强了我们对亚微米尺度的物理和生物系统的理解。由于AFM的性能在很大程度上取决于悬臂梁的性能,因此许多工作已经完成,通过光刻[1]和离子束铣削[2,3]来改变悬臂梁的几何形状,主要涉及悬臂梁表面的开口区域,从而产生高谐振频率,低弹簧常数和低流体动力阻尼。使用纳米级壁厚[4]的空心梁悬臂梁实现了类似的改进。事实上,这两种方法(面内开孔和空心梁)的结合可以产生具有可调谐特性[5]的独特超材料结构,但尚未探索用于AFM的应用。在这项工作中,我们探索了平面内修改的空心AFM悬臂梁。我们通过(1)采用商业固体硅悬臂,(2)使用脉冲激光微加工在表面上制造不同数量的孔,以及(3)使用原子层沉积和蚀刻内部硅在它们表面涂上氧化铝,从而实现了带孔的空心探针。我们介绍了这些修改对悬臂梁的谐振频率、质量因子和空气中的弹簧常数的影响。这项工作为调整悬臂梁的弯曲和扭转模式的特性提供了一个深入的策略。参考文献:[1]Nilsen, M.;港口,f;鲁斯,m;Gottschalk以及K.-E。李建军,刘建军,李建军,等。微力学与微工程学报,2019,29(2),025014。[2]牛,m.s.;苏兰,r.m.a.;李,h;李建军,李建军,李建军,等。化学工程学报,2014,(5):494 - 495。[3] Hodges, a.r.;巴斯曼,k.m.;何俊华。仪器仪表学报,2001,32(10):880- 883。[4] Cha, W.;他,美国;Lilley d;林,c;固态传感器、致动器和微系统研讨会,希尔顿黑德岛,南卡罗来纳州,2018;传感器研究基金会:希尔顿黑德岛,南卡罗来纳州,第232-233页。[5]林,C.;尼斯,s.m.;利利博士;议会,j .;娇,p;辛格,j .;阿扎迪,m;洛佩斯,g.g.;麦茨勒,m;普罗希特,p.k.;李建军,刘建军,刘建军,等。自然通讯,2018,(1),4442。[10]林志强,陈志强,焦平,陈志强,等,“纳米纸板在纳米尺度上的应用,”《自然》杂志,第9卷,第44页,2018/10/25 2018。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信