Non-productive machine transliteration

Satoshi Sato
{"title":"Non-productive machine transliteration","authors":"Satoshi Sato","doi":"10.5555/1937055.1937059","DOIUrl":null,"url":null,"abstract":"This paper proposes a new framework of machine transliteration, called non-productive machine transliteration. In this framework, it is assumed that a large candidate list including the correct transliteration is given. Therefore, the transliteration problem is simplified into the selection problem of the correct entry from the large list. We have developed an efficient algorithm of this framework and applied it to English-Japanese transliteration of person names. Experimental results show that our algorithm is practical even if the size of the candidate list is over a million.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a new framework of machine transliteration, called non-productive machine transliteration. In this framework, it is assumed that a large candidate list including the correct transliteration is given. Therefore, the transliteration problem is simplified into the selection problem of the correct entry from the large list. We have developed an efficient algorithm of this framework and applied it to English-Japanese transliteration of person names. Experimental results show that our algorithm is practical even if the size of the candidate list is over a million.
非生产性机器音译
本文提出了一种新的机器音译框架,称为非生产性机器音译。在这个框架中,假定给出了一个包含正确音译的大候选列表。因此,将音译问题简化为从大列表中选择正确条目的问题。我们开发了该框架的高效算法,并将其应用于人名的英日音译。实验结果表明,即使候选列表的规模超过一百万,我们的算法也是实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信