Computing PageRank Scores of Web Crawl Data Using DGX A100 Clusters

Seunghwa Kang, Alexandre Fender, Joe Eaton, Brad Rees
{"title":"Computing PageRank Scores of Web Crawl Data Using DGX A100 Clusters","authors":"Seunghwa Kang, Alexandre Fender, Joe Eaton, Brad Rees","doi":"10.1109/HPEC43674.2020.9286216","DOIUrl":null,"url":null,"abstract":"PageRank is a widely used graph analytics algorithm to rank vertices using relationship data. Large-scale Page Rank is challenging due to its irregular and communication intensive computational characteristics. We implemented Page Rank on NVIDIA's newly released DGX A100 cluster and compared the performance with two recent notable large-scale Page Rank computations using the Common Crawl dataset. The ShenTu framework computed Page Rank scores using a large number of custom microprocessors connected with an HPC class interconnect. The Hronos framework reported the state-of-the-art performance using 3000 commodity CPU nodes and 10 Gbps Ethernet. The Common Crawl dataset captures link relationships between web pages in a graph with 3.563 billion vertices and 128.736 billion edges. Our implementation demonstrated 13x faster PageRank iteration time than the Hronos framework using a cluster with NVLink connected 32 A100 GPUs.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"433 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

PageRank is a widely used graph analytics algorithm to rank vertices using relationship data. Large-scale Page Rank is challenging due to its irregular and communication intensive computational characteristics. We implemented Page Rank on NVIDIA's newly released DGX A100 cluster and compared the performance with two recent notable large-scale Page Rank computations using the Common Crawl dataset. The ShenTu framework computed Page Rank scores using a large number of custom microprocessors connected with an HPC class interconnect. The Hronos framework reported the state-of-the-art performance using 3000 commodity CPU nodes and 10 Gbps Ethernet. The Common Crawl dataset captures link relationships between web pages in a graph with 3.563 billion vertices and 128.736 billion edges. Our implementation demonstrated 13x faster PageRank iteration time than the Hronos framework using a cluster with NVLink connected 32 A100 GPUs.
使用DGX A100集群计算网页抓取数据的PageRank分数
PageRank是一种广泛使用的图形分析算法,它使用关系数据对顶点进行排名。大规模页面排名由于其不规则和通信密集的计算特性而具有挑战性。我们在NVIDIA新发布的DGX A100集群上实现了Page Rank,并使用Common Crawl数据集将其性能与最近两次显著的大规模Page Rank计算进行了比较。ShenTu框架使用与HPC类互连连接的大量定制微处理器计算Page Rank分数。Hronos框架报告了使用3000个商品CPU节点和10 Gbps以太网的最先进性能。Common Crawl数据集在一个有35.63亿个顶点和1287.36亿个边的图中捕获网页之间的链接关系。我们的实现证明了PageRank迭代时间比使用NVLink连接32个A100 gpu的集群的Hronos框架快13倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信