Configuring advanced evolutionary algorithms for multicriteria building spatial design optimisation

K. Blom, S. Boonstra, H. Hofmeyer, Thomas Bäck, M. Emmerich
{"title":"Configuring advanced evolutionary algorithms for multicriteria building spatial design optimisation","authors":"K. Blom, S. Boonstra, H. Hofmeyer, Thomas Bäck, M. Emmerich","doi":"10.1109/CEC.2017.7969520","DOIUrl":null,"url":null,"abstract":"In this paper solution approaches for solving the building spatial design optimisation problem for structural and energy performance are advanced on multiple fronts. A new initialisation operator is introduced to generate an unbiased initial population for a tailored version of SMS-EMOA with problem specific operators. Improvements to the mutation operator are proposed to eliminate bias and allow mutations consisting of multiple steps. Moreover, landscape analysis is applied in order to explore the landscape of both objectives and investigate the behaviour of the mutation operator. Parameter tuning is applied with the irace package and the Mixed Integer Evolution Strategy to find improved parameter settings and explore tuning with a relatively small number of expensive evaluations. Finally, the performances of the standard and tailored SMS-EMOA algorithms with tuned parameters are compared.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper solution approaches for solving the building spatial design optimisation problem for structural and energy performance are advanced on multiple fronts. A new initialisation operator is introduced to generate an unbiased initial population for a tailored version of SMS-EMOA with problem specific operators. Improvements to the mutation operator are proposed to eliminate bias and allow mutations consisting of multiple steps. Moreover, landscape analysis is applied in order to explore the landscape of both objectives and investigate the behaviour of the mutation operator. Parameter tuning is applied with the irace package and the Mixed Integer Evolution Strategy to find improved parameter settings and explore tuning with a relatively small number of expensive evaluations. Finally, the performances of the standard and tailored SMS-EMOA algorithms with tuned parameters are compared.
为多准则建筑空间设计优化配置先进的进化算法
本文从多个方面提出了解决建筑空间结构和能源性能优化问题的解决方法。引入了一个新的初始化算子,为具有特定问题算子的定制版SMS-EMOA生成无偏初始人口。提出了对突变算子的改进,以消除偏差并允许由多个步骤组成的突变。此外,为了探索两个目标的景观和研究突变算子的行为,应用了景观分析。使用irace包和混合整数进化策略应用参数调优,以找到改进的参数设置,并使用相对较少的昂贵评估来探索调优。最后,比较了调整参数后的标准和定制短信emoa算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信