Object detection in sports videos

Matija Buric, M. Pobar, Marina Ivasic-Kos
{"title":"Object detection in sports videos","authors":"Matija Buric, M. Pobar, Marina Ivasic-Kos","doi":"10.23919/MIPRO.2018.8400189","DOIUrl":null,"url":null,"abstract":"Object detection is commonly used in many computer vision applications. In our case, we need to apply the object detector as a prerequisite for action recognition in handball scenes. Object detection, to be successful for this task, should be as accurate as possible and should be able to deal with a different number of objects of various sizes, partially occluded, with bad illumination and deal with cluttered scenes. The aim of this paper is to provide an overview of the current state-of-the-art detection methods that rely on convolutional neural networks (CNNs) and test their performance on custom video sports materials acquired during handball training and matches. The comparison of the detector performance in different conditions will be given and discussed.","PeriodicalId":431110,"journal":{"name":"2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIPRO.2018.8400189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Object detection is commonly used in many computer vision applications. In our case, we need to apply the object detector as a prerequisite for action recognition in handball scenes. Object detection, to be successful for this task, should be as accurate as possible and should be able to deal with a different number of objects of various sizes, partially occluded, with bad illumination and deal with cluttered scenes. The aim of this paper is to provide an overview of the current state-of-the-art detection methods that rely on convolutional neural networks (CNNs) and test their performance on custom video sports materials acquired during handball training and matches. The comparison of the detector performance in different conditions will be given and discussed.
运动视频中的目标检测
目标检测在许多计算机视觉应用中都是常用的。在我们的案例中,我们需要将目标检测器作为手球场景中动作识别的先决条件。物体检测,要成功完成这项任务,应该尽可能准确,应该能够处理不同数量的不同大小的物体,部分遮挡,照明不好,处理杂乱的场景。本文的目的是概述当前最先进的检测方法,这些方法依赖于卷积神经网络(cnn),并测试它们在手球训练和比赛期间获得的定制视频运动材料上的性能。并对探测器在不同条件下的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信