Binary hierarchical multiclass classifier for uncertain numerical features

Marwa Chakroun, Amal Charfi, Sonda Ammar Bouhamed, I. Kallel, B. Solaiman, H. Derbel
{"title":"Binary hierarchical multiclass classifier for uncertain numerical features","authors":"Marwa Chakroun, Amal Charfi, Sonda Ammar Bouhamed, I. Kallel, B. Solaiman, H. Derbel","doi":"10.1109/ATSIP49331.2020.9231804","DOIUrl":null,"url":null,"abstract":"Real-world multiclass classification problems involve moderately high dimensional inputs with a large number of class labels. As well, for most real-world applications, uncertainty has to be handled carefully, unless the classification results could be inaccurate or even incorrect. In this paper, we investigate a binary hierarchical partitioning of the output space in an uncertain framework to overcome these limitations and yield better solutions. Uncertainty is modeled within the quantitative possibility theory framework. Experimentations on real ultrasonic dataset show good performances of the proposed multiclass classifier. An accuracy rate of 93% has been achieved.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-world multiclass classification problems involve moderately high dimensional inputs with a large number of class labels. As well, for most real-world applications, uncertainty has to be handled carefully, unless the classification results could be inaccurate or even incorrect. In this paper, we investigate a binary hierarchical partitioning of the output space in an uncertain framework to overcome these limitations and yield better solutions. Uncertainty is modeled within the quantitative possibility theory framework. Experimentations on real ultrasonic dataset show good performances of the proposed multiclass classifier. An accuracy rate of 93% has been achieved.
不确定数值特征的二元层次多类分类器
现实世界中的多类分类问题涉及具有大量类标签的中等高维输入。同样,对于大多数实际应用程序,必须小心处理不确定性,除非分类结果可能不准确甚至不正确。在本文中,我们研究了在不确定框架下输出空间的二元分层划分,以克服这些限制并获得更好的解。不确定性在定量可能性理论框架内建模。在真实超声数据集上的实验表明,所提出的多类分类器具有良好的性能。准确率达到93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信