Wind Power Interval Forecasting under Irregular Distribution

A. Hussain, Daoqing Li, Rui Xu, Xiaodong Yu
{"title":"Wind Power Interval Forecasting under Irregular Distribution","authors":"A. Hussain, Daoqing Li, Rui Xu, Xiaodong Yu","doi":"10.1109/ICPSAsia52756.2021.9621480","DOIUrl":null,"url":null,"abstract":"In this article, a wind power interval forecasting method based on Parzen window estimation and interval optimization is proposed. First, the Parzen window estimation method is used to find the wind power forecast error distribution of arbitrary shape due to its property of good fitting and more compatibility with actual data. Second, the optimization method is used to find the shortest confidence interval under the irregular distribution. Finally, the wind power interval forecast result is obtained based on the precise and minimum interval width. Simulation results show that comparing with traditional method, the proposed method can obtain the minimum forecast interval under every confidence degree. The proposed approach is not only more precise but also more practical.","PeriodicalId":296085,"journal":{"name":"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPSAsia52756.2021.9621480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, a wind power interval forecasting method based on Parzen window estimation and interval optimization is proposed. First, the Parzen window estimation method is used to find the wind power forecast error distribution of arbitrary shape due to its property of good fitting and more compatibility with actual data. Second, the optimization method is used to find the shortest confidence interval under the irregular distribution. Finally, the wind power interval forecast result is obtained based on the precise and minimum interval width. Simulation results show that comparing with traditional method, the proposed method can obtain the minimum forecast interval under every confidence degree. The proposed approach is not only more precise but also more practical.
不规则分布下风电功率区间预测
本文提出了一种基于Parzen窗估计和区间优化的风电功率区间预测方法。首先,利用Parzen窗估计方法求解任意形状的风电预测误差分布,该方法拟合好,与实际数据的相容性较好;其次,利用优化方法寻找不规则分布下的最短置信区间。最后,根据最小区间宽度和精确区间宽度,得到风电区间预测结果。仿真结果表明,与传统方法相比,该方法能在每个置信度下获得最小的预测区间。所提出的方法不仅更精确,而且更实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信