Adaptive spectrum sensing and learning in cognitive radio networks

Abbas Taherpour, S. Gazor, A. Taherpour
{"title":"Adaptive spectrum sensing and learning in cognitive radio networks","authors":"Abbas Taherpour, S. Gazor, A. Taherpour","doi":"10.5281/ZENODO.41947","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Primary User (PU) activity detection algorithm for a wideband frequency range which updates spectrum sensing parameters. We assume that the signal of PUs and noise are independent and jointly zero-mean Gaussian processes with unknown variances. We employ a Markov Model (MM) with two states to model the activity of PU which representing the presence and absence of the PU at each subband. By using such a MM, the proposed PU activity detector estimates the probabilities of PU presence in different subbands, recursively, in three steps. Our simulation results show that the proposed algorithm always performs better than the Energy Detector (ED) and despite its simple implementation has slightly better performance than the computationally complex Cyclostationarity Feature Detector (CFD) for practical values of the Signal-to-Noise Ratio (SNR).","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.41947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a Primary User (PU) activity detection algorithm for a wideband frequency range which updates spectrum sensing parameters. We assume that the signal of PUs and noise are independent and jointly zero-mean Gaussian processes with unknown variances. We employ a Markov Model (MM) with two states to model the activity of PU which representing the presence and absence of the PU at each subband. By using such a MM, the proposed PU activity detector estimates the probabilities of PU presence in different subbands, recursively, in three steps. Our simulation results show that the proposed algorithm always performs better than the Energy Detector (ED) and despite its simple implementation has slightly better performance than the computationally complex Cyclostationarity Feature Detector (CFD) for practical values of the Signal-to-Noise Ratio (SNR).
认知无线电网络中的自适应频谱感知与学习
在本文中,我们提出了一种用于宽带频率范围的主用户(PU)活动检测算法,该算法更新了频谱感知参数。我们假设pu信号和噪声是独立的、共同的零均值高斯过程,方差未知。我们采用一个具有两种状态的马尔可夫模型(MM)来模拟PU的活动,表示PU在每个子带的存在和不存在。通过使用这种MM,所提出的PU活性检测器分三步递归地估计PU在不同子带中存在的概率。仿真结果表明,该算法的性能始终优于能量检测器(ED),尽管其实现简单,但在信噪比(SNR)的实用值方面,其性能略优于计算复杂的循环平稳特征检测器(CFD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信