{"title":"Lagrangian equations of motion. Conservation laws","authors":"G. Kotkin, V. Serbo","doi":"10.1093/oso/9780198853787.003.0004","DOIUrl":null,"url":null,"abstract":"This chapter addresses the invariance of the Lagrangian equations of motion under the coordinate to transformation, the transformation of the energy and generalised momenta under the coordinate transformation. The integrals of motion for a particle moving in the field with a given symmetry to the Noether’s theorem, the Lagrangian functions, and the Lagrangian equations of motion for the electromechanical system. The authors also discuss the influence of constraints and friction on the motion of a system, the virial theorem and its generalization in the presents of a magnetic field, and an additional integral of motion for a system of three interacting particles.","PeriodicalId":201389,"journal":{"name":"Exploring Classical Mechanics","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploring Classical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198853787.003.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter addresses the invariance of the Lagrangian equations of motion under the coordinate to transformation, the transformation of the energy and generalised momenta under the coordinate transformation. The integrals of motion for a particle moving in the field with a given symmetry to the Noether’s theorem, the Lagrangian functions, and the Lagrangian equations of motion for the electromechanical system. The authors also discuss the influence of constraints and friction on the motion of a system, the virial theorem and its generalization in the presents of a magnetic field, and an additional integral of motion for a system of three interacting particles.