Regression Analysis & Visualization of Twitch Dataset

Insha Khan, Riya Kumari, N. Sharma, M. Mangla, Inderdeep Kaur
{"title":"Regression Analysis & Visualization of Twitch Dataset","authors":"Insha Khan, Riya Kumari, N. Sharma, M. Mangla, Inderdeep Kaur","doi":"10.1109/ICICT55121.2022.10064568","DOIUrl":null,"url":null,"abstract":"This paper examines Twitch dataset in order to determine and unveil various aspects and relationship among attributes of dataset. Twitch is an online platform used for video game live streaming. The models used by authors in their analysis are Logistic regression, Naïve Bayes, K-Nearest Neighbour and Decision tree. As demonstrated by the authors, K-Nearest Neighbour and logistic regressions outperform other model by yielding an accuracy of 97.7% and 97.4 %.","PeriodicalId":181396,"journal":{"name":"2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT55121.2022.10064568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper examines Twitch dataset in order to determine and unveil various aspects and relationship among attributes of dataset. Twitch is an online platform used for video game live streaming. The models used by authors in their analysis are Logistic regression, Naïve Bayes, K-Nearest Neighbour and Decision tree. As demonstrated by the authors, K-Nearest Neighbour and logistic regressions outperform other model by yielding an accuracy of 97.7% and 97.4 %.
回归分析和可视化抽搐数据集
本文对Twitch数据集进行了研究,以确定和揭示数据集的各个方面和属性之间的关系。Twitch是用于视频游戏直播的在线平台。作者在分析中使用的模型是逻辑回归,Naïve贝叶斯,k近邻和决策树。正如作者所证明的那样,k近邻和逻辑回归的准确率分别为97.7%和97.4%,优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信