On Solving Block Toeplitz Systems Using a Block Schur Algorithm

K. Gallivan, S. Thirumalai, P. Dooren
{"title":"On Solving Block Toeplitz Systems Using a Block Schur Algorithm","authors":"K. Gallivan, S. Thirumalai, P. Dooren","doi":"10.1109/ICPP.1994.136","DOIUrl":null,"url":null,"abstract":"This paper presents a block Schur algorithm to obtain a factorization of a symmetric block Toeplitz matrix. We develop a version based on block hyperbolic Householder reflectors by adapting the representation schemes for block Householder reflectors to the hyperbolic case. If a singular principal submatrix is encountered during the factorization, the matrix is perturbed and an approximate factorization is obtained. This is then combined with iterative refinement to obtain the final solution.","PeriodicalId":162043,"journal":{"name":"1994 International Conference on Parallel Processing Vol. 3","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 International Conference on Parallel Processing Vol. 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1994.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a block Schur algorithm to obtain a factorization of a symmetric block Toeplitz matrix. We develop a version based on block hyperbolic Householder reflectors by adapting the representation schemes for block Householder reflectors to the hyperbolic case. If a singular principal submatrix is encountered during the factorization, the matrix is perturbed and an approximate factorization is obtained. This is then combined with iterative refinement to obtain the final solution.
用块Schur算法求解块Toeplitz系统
本文提出了一种块Schur算法来求对称块Toeplitz矩阵的因式分解。我们开发了一个基于块双曲户型反射器的版本,将块户型反射器的表示方案适应于双曲情况。如果在分解过程中遇到奇异主子矩阵,则对矩阵进行摄动,得到近似分解。然后将其与迭代细化相结合以获得最终解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信