Finding periodicity in space and time

Fang Liu, Rosalind W. Picard
{"title":"Finding periodicity in space and time","authors":"Fang Liu, Rosalind W. Picard","doi":"10.1109/ICCV.1998.710746","DOIUrl":null,"url":null,"abstract":"An algorithm for simultaneous detection, segmentation, and characterization of spatiotemporal periodicity is presented. The use of periodicity templates is proposed to localize and characterize temporal activities. The templates not only indicate the presence and location of a periodic event, but also give an accurate quantitative periodicity measure. Hence, they can be used as a new means of periodicity representation. The proposed algorithm can also be considered as a \"periodicity filter\", a low-level model of periodicity perception. The algorithm is computationally simple, and shown to be more robust than optical flow based techniques in the presence of noise. A variety of real-world examples are used to demonstrate the performance of the algorithm.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

Abstract

An algorithm for simultaneous detection, segmentation, and characterization of spatiotemporal periodicity is presented. The use of periodicity templates is proposed to localize and characterize temporal activities. The templates not only indicate the presence and location of a periodic event, but also give an accurate quantitative periodicity measure. Hence, they can be used as a new means of periodicity representation. The proposed algorithm can also be considered as a "periodicity filter", a low-level model of periodicity perception. The algorithm is computationally simple, and shown to be more robust than optical flow based techniques in the presence of noise. A variety of real-world examples are used to demonstrate the performance of the algorithm.
寻找空间和时间的周期性
提出了一种同时检测、分割和表征时空周期性的算法。提出了使用周期性模板来定位和表征时间活动。这些模板不仅表明周期事件的存在和位置,而且给出了精确的定量周期度量。因此,它们可以作为一种新的周期表示方法。所提出的算法也可以被认为是一个“周期性过滤器”,一个周期性感知的低级模型。该算法计算简单,并且在存在噪声的情况下比基于光流的技术具有更强的鲁棒性。各种现实世界的例子被用来证明该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信