Genetic algorithm optimization applied to the project of MIMO systems

I. Leal, M. Alencar, W. Lopes
{"title":"Genetic algorithm optimization applied to the project of MIMO systems","authors":"I. Leal, M. Alencar, W. Lopes","doi":"10.23919/SOFTCOM.2017.8115541","DOIUrl":null,"url":null,"abstract":"This paper presents a technique to increase the data throughput in Multiple Input Multiple Output (MIMO) systems. The technique uses a meta-heuristic to optimize the data throughput and to choose the best solution. The optimization is based on Genetic Algorithms (GA), with the objective of finding out the best antenna configuration to achieve the highest data throughput from the variation of the distance between the antenna array elements and the number of antennas. Simulation results show an increase of more than 15% in the data throughput considering 4×4 MIMO channels.","PeriodicalId":189860,"journal":{"name":"2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SOFTCOM.2017.8115541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a technique to increase the data throughput in Multiple Input Multiple Output (MIMO) systems. The technique uses a meta-heuristic to optimize the data throughput and to choose the best solution. The optimization is based on Genetic Algorithms (GA), with the objective of finding out the best antenna configuration to achieve the highest data throughput from the variation of the distance between the antenna array elements and the number of antennas. Simulation results show an increase of more than 15% in the data throughput considering 4×4 MIMO channels.
遗传算法优化在MIMO系统工程中的应用
提出了一种提高多输入多输出(MIMO)系统数据吞吐量的技术。该技术使用元启发式来优化数据吞吐量并选择最佳解决方案。该优化算法基于遗传算法(GA),目的是根据天线阵列单元之间的距离和天线数量的变化找出实现最高数据吞吐量的最佳天线配置。仿真结果表明,考虑4×4 MIMO信道,数据吞吐量提高15%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信