Delay-Tolerant Data Fusion for Underwater Acoustic Tracking Networks

Mohammadreza Alimadadi, M. Stojanovic, P. Closas
{"title":"Delay-Tolerant Data Fusion for Underwater Acoustic Tracking Networks","authors":"Mohammadreza Alimadadi, M. Stojanovic, P. Closas","doi":"10.1109/UComms50339.2021.9598132","DOIUrl":null,"url":null,"abstract":"We consider a network of distributed underwater sensors whose task is to monitor the movement of objects across an area. The sensors measure the strength of signals emanated by the objects and convey the measurements to the local fusion centers. Multiple fusion centers are deployed to cover an arbitrarily large area. The fusion centers communicate with each other to achieve consensus on the estimated locations of the moving objects. We introduce two efficient methods for data fusion of distributed partial estimates when delay in communication is not negligible. We concentrate on the minimum mean squared error (MMSE) global estimator, and evaluate the performance of these fusion methods in the context of multiple-object tracking via extended Kalman filtering. Numerical results show the superior performance compared to the case when delay is ignored.","PeriodicalId":371411,"journal":{"name":"2021 Fifth Underwater Communications and Networking Conference (UComms)","volume":"395 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth Underwater Communications and Networking Conference (UComms)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UComms50339.2021.9598132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a network of distributed underwater sensors whose task is to monitor the movement of objects across an area. The sensors measure the strength of signals emanated by the objects and convey the measurements to the local fusion centers. Multiple fusion centers are deployed to cover an arbitrarily large area. The fusion centers communicate with each other to achieve consensus on the estimated locations of the moving objects. We introduce two efficient methods for data fusion of distributed partial estimates when delay in communication is not negligible. We concentrate on the minimum mean squared error (MMSE) global estimator, and evaluate the performance of these fusion methods in the context of multiple-object tracking via extended Kalman filtering. Numerical results show the superior performance compared to the case when delay is ignored.
水声跟踪网络的容延迟数据融合
我们考虑一个分布式水下传感器网络,其任务是监测一个区域内物体的运动。传感器测量物体发出的信号强度,并将测量结果传送到局部融合中心。部署多个融合中心以覆盖任意大的区域。融合中心之间相互通信,对运动物体的估计位置达成共识。在通信延迟不可忽略的情况下,提出了两种有效的分布式部分估计数据融合方法。重点研究了最小均方误差(MMSE)全局估计量,并通过扩展卡尔曼滤波评估了这些融合方法在多目标跟踪中的性能。数值结果表明,与忽略延迟的情况相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信