Online evolving fuzzy rule-based prediction model for high frequency trading financial data stream

Xiaowei Gu, P. Angelov, A. Ali, W. Gruver, G. Gaydadjiev
{"title":"Online evolving fuzzy rule-based prediction model for high frequency trading financial data stream","authors":"Xiaowei Gu, P. Angelov, A. Ali, W. Gruver, G. Gaydadjiev","doi":"10.1109/EAIS.2016.7502509","DOIUrl":null,"url":null,"abstract":"Analyzing and predicting the high frequency trading (HFT) financial data stream is very challenging due to the fast arrival times and large amount of the data samples. Aiming at solving this problem, an online evolving fuzzy rule-based prediction model is proposed in this paper. Because this prediction model is based on evolving fuzzy rule-based systems and a novel, simpler form of data density, it can autonomously learn from the live data stream, automatically build/remove its rules and recursively update the parameters. This model responds quickly to all unpredictable sudden changes of financial data and re-adjusts itself to follow the new data pattern. Experimental results show the excellent prediction performance of the proposed approach with real financial data stream regardless of quick shifts of data patterns and frequent appearances of abnormal data samples.","PeriodicalId":303392,"journal":{"name":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2016.7502509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Analyzing and predicting the high frequency trading (HFT) financial data stream is very challenging due to the fast arrival times and large amount of the data samples. Aiming at solving this problem, an online evolving fuzzy rule-based prediction model is proposed in this paper. Because this prediction model is based on evolving fuzzy rule-based systems and a novel, simpler form of data density, it can autonomously learn from the live data stream, automatically build/remove its rules and recursively update the parameters. This model responds quickly to all unpredictable sudden changes of financial data and re-adjusts itself to follow the new data pattern. Experimental results show the excellent prediction performance of the proposed approach with real financial data stream regardless of quick shifts of data patterns and frequent appearances of abnormal data samples.
高频交易金融数据流的在线演化模糊规则预测模型
高频交易(HFT)金融数据流由于到达时间快、数据样本量大,分析和预测非常具有挑战性。针对这一问题,本文提出了一种基于模糊规则的在线演化预测模型。由于该预测模型基于不断进化的模糊规则系统和一种新颖、更简单的数据密度形式,因此它可以从实时数据流中自主学习,自动建立/删除其规则并递归更新参数。该模型对所有不可预测的金融数据突然变化做出快速反应,并根据新的数据模式重新调整自身。实验结果表明,该方法对真实金融数据流具有良好的预测性能,不受数据模式快速变化和异常数据样本频繁出现的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信