Existence of herman rings for meromorphic functions

P. Domínguez, Núria Fagella †
{"title":"Existence of herman rings for meromorphic functions","authors":"P. Domínguez, Núria Fagella †","doi":"10.1080/02781070412331298589","DOIUrl":null,"url":null,"abstract":"We apply the Shishikura surgery construction to transcendental maps in order to obtain examples of meromorphic functions with Herman rings, in a variety of possible arrangements. We give a sharp bound on the maximum possible number of such rings that a meromorphic function may have, in terms of the number of poles. Finally we discuss the possibility of having “unbounded” Herman rings (i.e., with an essential singularity in the boundary), and give some examples of maps with this property.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070412331298589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We apply the Shishikura surgery construction to transcendental maps in order to obtain examples of meromorphic functions with Herman rings, in a variety of possible arrangements. We give a sharp bound on the maximum possible number of such rings that a meromorphic function may have, in terms of the number of poles. Finally we discuss the possibility of having “unbounded” Herman rings (i.e., with an essential singularity in the boundary), and give some examples of maps with this property.
亚纯函数赫尔曼环的存在性
我们将Shishikura手术构造应用于超越映射,以获得具有Herman环的亚纯函数在各种可能排列中的例子。我们用极点的个数给出了亚纯函数可能具有的这种环的最大可能数的一个明确的界。最后,我们讨论了具有“无界”赫尔曼环(即在边界上具有本质奇点)的可能性,并给出了一些具有这种性质的映射的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信