Deep Classification of Fundus Images Using Semi Supervised GAN

C. Gobinath, M. P. Gopinath
{"title":"Deep Classification of Fundus Images Using Semi Supervised GAN","authors":"C. Gobinath, M. P. Gopinath","doi":"10.1109/ICACTA54488.2022.9752893","DOIUrl":null,"url":null,"abstract":"In ophthalmology, fundus image analysis is an efficient way to avoid blindness. Existing deep learning methods with fundus images fail to attain high classification performance because there are considerable numbers of pixel wise annotated data are used for training. The proposed work examines the performance of semi-supervised generative adversarial network from labeled ODIR dataset and from private dataset available in hospital. Training process is enhanced by using unlabeled dataset at various levels, weights which are updated frequently in training phase and finally test phase with labeled ODIR dataset improves classification accuracy. The optimized loss function is used to update weight parameters of discriminator and generator. The wide-ranging research shows that our model achieves state-of-art retinal classification accuracy by using ODIR and hospital dataset.","PeriodicalId":345370,"journal":{"name":"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computing Technologies and Applications (ICACTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTA54488.2022.9752893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In ophthalmology, fundus image analysis is an efficient way to avoid blindness. Existing deep learning methods with fundus images fail to attain high classification performance because there are considerable numbers of pixel wise annotated data are used for training. The proposed work examines the performance of semi-supervised generative adversarial network from labeled ODIR dataset and from private dataset available in hospital. Training process is enhanced by using unlabeled dataset at various levels, weights which are updated frequently in training phase and finally test phase with labeled ODIR dataset improves classification accuracy. The optimized loss function is used to update weight parameters of discriminator and generator. The wide-ranging research shows that our model achieves state-of-art retinal classification accuracy by using ODIR and hospital dataset.
基于半监督GAN的眼底图像深度分类
在眼科学中,眼底图像分析是避免失明的有效方法。现有的眼底图像深度学习方法由于使用了大量的逐像素标注数据进行训练,分类效果不理想。提出的工作从标记的ODIR数据集和医院可用的私有数据集检查半监督生成对抗网络的性能。通过在不同层次上使用未标记的数据集来增强训练过程,在训练阶段和最终测试阶段频繁更新权重,使用标记的ODIR数据集提高了分类精度。利用优化后的损失函数更新鉴别器和生成器的权值参数。广泛的研究表明,我们的模型通过使用ODIR和医院数据集实现了最先进的视网膜分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信