Secrecy Capacity of a Gaussian Wiretap Channel with One-bit ADCs is Always Positive

S. Nam, Si-Hyeon Lee
{"title":"Secrecy Capacity of a Gaussian Wiretap Channel with One-bit ADCs is Always Positive","authors":"S. Nam, Si-Hyeon Lee","doi":"10.1109/ITW44776.2019.8988965","DOIUrl":null,"url":null,"abstract":"We consider the Gaussian wiretap channel with one-bit analog-to-digital converters (ADCs) at both the legitimate receiver and the eavesdropper. In this channel, we show that a positive secrecy rate is always achievable whenever the noise power $n_{1}^{2}$ at the legitimate receiver is not the same as the noise power $n_{2}^{2}$ at the eavesdropper. A binary phase-shift keying (BPSK) and an asymmetric BPSK are shown to achieve a positive secrecy rate for the cases of $n_{1} < n_{2}$ and $n_{1} > n_{2}$, respectively. We partially justify the choice of these signalings by showing that the optimal input distribution that achieves $R_{s}^{*}:= \\displaystyle \\sup _{P_{X}:\\mathrm {E}[X^{2}]\\leq P}I(X;Y_{1}) -I(X;Y_{2})$, where $X$ is the channel input with power constraint of $P$, and $Y_{1}$ and $Y_{2}$ are the channel outputs at the legitimate receiver and the eavesdropper, respectively, should satisfy some symmetric and asymmetric properties for the cases of $n_{1} < n_{2}$ and $n_{1} > n_{2}$, respectively. Moreover, for $n_{1} < n_{2}$ and sufficiently large $P$, it is shown that a BPSK using power smaller than $P$ achieves $R_{s}^{*}$.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8988965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the Gaussian wiretap channel with one-bit analog-to-digital converters (ADCs) at both the legitimate receiver and the eavesdropper. In this channel, we show that a positive secrecy rate is always achievable whenever the noise power $n_{1}^{2}$ at the legitimate receiver is not the same as the noise power $n_{2}^{2}$ at the eavesdropper. A binary phase-shift keying (BPSK) and an asymmetric BPSK are shown to achieve a positive secrecy rate for the cases of $n_{1} < n_{2}$ and $n_{1} > n_{2}$, respectively. We partially justify the choice of these signalings by showing that the optimal input distribution that achieves $R_{s}^{*}:= \displaystyle \sup _{P_{X}:\mathrm {E}[X^{2}]\leq P}I(X;Y_{1}) -I(X;Y_{2})$, where $X$ is the channel input with power constraint of $P$, and $Y_{1}$ and $Y_{2}$ are the channel outputs at the legitimate receiver and the eavesdropper, respectively, should satisfy some symmetric and asymmetric properties for the cases of $n_{1} < n_{2}$ and $n_{1} > n_{2}$, respectively. Moreover, for $n_{1} < n_{2}$ and sufficiently large $P$, it is shown that a BPSK using power smaller than $P$ achieves $R_{s}^{*}$.
具有1位adc的高斯窃听信道的保密能力总是正的
我们考虑高斯窃听信道在合法接收方和窃听方都有一个位模数转换器(adc)。在这个信道中,我们证明了只要合法接收方的噪声功率$n_{1}^{2}$与窃听方的噪声功率$n_{2}^{2}$不相同,总是可以实现正保密率。二元相移键控(BPSK)和非对称BPSK分别在$n_{1} < n_{2}$和$n_{1} > n_{2}$的情况下实现了正保密率。我们通过展示实现$R_{s}^{*}:= \displaystyle \sup _{P_{X}:\mathrm {E}[X^{2}]\leq P}I(X;Y_{1}) -I(X;Y_{2})$的最佳输入分布来部分证明这些信号的选择,其中$X$是具有$P$功率约束的信道输入,$Y_{1}$和$Y_{2}$分别是合法接收方和窃听方的信道输出,对于$n_{1} < n_{2}$和$n_{1} > n_{2}$的情况,它们应该分别满足一些对称和不对称属性。此外,对于$n_{1} < n_{2}$和足够大的$P$,表明使用小于$P$的功率的BPSK可以达到$R_{s}^{*}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信