Qumran Letter Restoration by Rotation and Reflection Modified PixelCNN

L. Uzan, N. Dershowitz, Lior Wolf
{"title":"Qumran Letter Restoration by Rotation and Reflection Modified PixelCNN","authors":"L. Uzan, N. Dershowitz, Lior Wolf","doi":"10.1109/ICDAR.2017.14","DOIUrl":null,"url":null,"abstract":"The task of restoring fragmentary letters is fundamental to the reading of ancient manuscripts. We present a method to complete broken letters in the Dead Sea Scrolls, which is based on PixelCNN++. Since the generation of the broken letters is conditioned on the extant scroll, we modify the original method to allow reconstructions in multiple directions. Results on both simulated data and real scrolls demonstrate the advantage of our method over the baseline. The implementation may be found at https://github.com/ghostcow/pixel-cnn-qumran.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The task of restoring fragmentary letters is fundamental to the reading of ancient manuscripts. We present a method to complete broken letters in the Dead Sea Scrolls, which is based on PixelCNN++. Since the generation of the broken letters is conditioned on the extant scroll, we modify the original method to allow reconstructions in multiple directions. Results on both simulated data and real scrolls demonstrate the advantage of our method over the baseline. The implementation may be found at https://github.com/ghostcow/pixel-cnn-qumran.
基于旋转和反射的Qumran字母复原
修复残缺的信件是阅读古代手稿的基本任务。提出了一种基于pixelcn++的死海古卷断字补全方法。由于破碎字母的生成取决于现存的卷轴,我们修改了原始方法,以允许在多个方向上进行重建。在模拟数据和真实卷轴上的结果表明,我们的方法优于基线。实现可以在https://github.com/ghostcow/pixel-cnn-qumran上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信