{"title":"Qumran Letter Restoration by Rotation and Reflection Modified PixelCNN","authors":"L. Uzan, N. Dershowitz, Lior Wolf","doi":"10.1109/ICDAR.2017.14","DOIUrl":null,"url":null,"abstract":"The task of restoring fragmentary letters is fundamental to the reading of ancient manuscripts. We present a method to complete broken letters in the Dead Sea Scrolls, which is based on PixelCNN++. Since the generation of the broken letters is conditioned on the extant scroll, we modify the original method to allow reconstructions in multiple directions. Results on both simulated data and real scrolls demonstrate the advantage of our method over the baseline. The implementation may be found at https://github.com/ghostcow/pixel-cnn-qumran.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The task of restoring fragmentary letters is fundamental to the reading of ancient manuscripts. We present a method to complete broken letters in the Dead Sea Scrolls, which is based on PixelCNN++. Since the generation of the broken letters is conditioned on the extant scroll, we modify the original method to allow reconstructions in multiple directions. Results on both simulated data and real scrolls demonstrate the advantage of our method over the baseline. The implementation may be found at https://github.com/ghostcow/pixel-cnn-qumran.