{"title":"Does a Randall-Sundrum Brane world effective potential influence axion walls helping to form a cosmological constant affecting inflation?","authors":"A. Beckwith","doi":"10.4236/JHEPGC.2016.21013","DOIUrl":null,"url":null,"abstract":"In 2003, Guth posed the following question in a KITP seminar in UCSB. Namely “Even if there exist 101000 vacuum states produced by String theory, does inflation produce overwhelmingly one preferred type of vacuum states over the other possible types of vacuum states”? This document tries to answer how a preferred vacuum state could be produced, and by what sort of process. We construct a di quark condensate leading to a cosmological constant in line with known physical observations. We use a phase transition bridge from a tilted washboard potential to the chaotic inflationary model pioneered by Guth which is congruent with the slow roll criteria. This permits criteria for initiation of graviton production from a domain wall formed after a transition to a chaotic inflationary potential. It also permits investigation of if or not axion wall contributions to inflation are necessary. If we reject an explicit axion mass drop off to infinitesimal values at high temperatures, we may use the Bogomolnyi inequality to rescale and reset initial conditions for the chaotic inflationary potential. Then the Randall-Sundrum brane world effective potential delineates the end of the dominant role of di quarks, and the beginning of inflation. And perhaps answers Freeman Dysons contention that Graviton production is unlikely given present astrophysical constraints upon detector systems. We end this with a description in the last appendix entry, Appendix VI, as to why, given the emphasis upon di quarks, as to the usefulness of using times before Planck time interval as to modeling our physical system and its importance as to emergent field structures used for cosmological modeling.","PeriodicalId":140890,"journal":{"name":"Electronic Journal of Theoretical Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JHEPGC.2016.21013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In 2003, Guth posed the following question in a KITP seminar in UCSB. Namely “Even if there exist 101000 vacuum states produced by String theory, does inflation produce overwhelmingly one preferred type of vacuum states over the other possible types of vacuum states”? This document tries to answer how a preferred vacuum state could be produced, and by what sort of process. We construct a di quark condensate leading to a cosmological constant in line with known physical observations. We use a phase transition bridge from a tilted washboard potential to the chaotic inflationary model pioneered by Guth which is congruent with the slow roll criteria. This permits criteria for initiation of graviton production from a domain wall formed after a transition to a chaotic inflationary potential. It also permits investigation of if or not axion wall contributions to inflation are necessary. If we reject an explicit axion mass drop off to infinitesimal values at high temperatures, we may use the Bogomolnyi inequality to rescale and reset initial conditions for the chaotic inflationary potential. Then the Randall-Sundrum brane world effective potential delineates the end of the dominant role of di quarks, and the beginning of inflation. And perhaps answers Freeman Dysons contention that Graviton production is unlikely given present astrophysical constraints upon detector systems. We end this with a description in the last appendix entry, Appendix VI, as to why, given the emphasis upon di quarks, as to the usefulness of using times before Planck time interval as to modeling our physical system and its importance as to emergent field structures used for cosmological modeling.