On the Asymptotics of Solutions of Differential Equations in Hilbert Space

L. Bagirov, V. Kondrat'ev
{"title":"On the Asymptotics of Solutions of Differential Equations in Hilbert Space","authors":"L. Bagirov, V. Kondrat'ev","doi":"10.1070/SM1992V072N02ABEH001415","DOIUrl":null,"url":null,"abstract":"Solutions of differential equations of first and arbitrary order in Hilbert space are investigated; they arise in the study of elliptic problems in cylindrical domains and in domains with singular points. Existence theorems are obtained for a broad class of right sides, and the asymptotics of a solution as t?∞ is constructed under \"minimal\" conditions on the coefficients. The results make considerable progress possible in the study of qualitative properties of solutions of elliptic equations of higher order.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V072N02ABEH001415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Solutions of differential equations of first and arbitrary order in Hilbert space are investigated; they arise in the study of elliptic problems in cylindrical domains and in domains with singular points. Existence theorems are obtained for a broad class of right sides, and the asymptotics of a solution as t?∞ is constructed under "minimal" conditions on the coefficients. The results make considerable progress possible in the study of qualitative properties of solutions of elliptic equations of higher order.
Hilbert空间中微分方程解的渐近性
研究Hilbert空间中一阶和任意阶微分方程的解;它们出现在圆柱域和奇异点域上的椭圆问题的研究中。得到了一类广义右边的存在性定理,并得到了解的渐近性,如t?∞是在系数的“极小”条件下构造的。这些结果使高阶椭圆方程解的定性性质的研究取得了很大的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信