Clustering Application for UKT Determination Using Pillar K-Means Clustering Algorithm and Flask Web Framework

A. Ramdani, H. Firmansyah
{"title":"Clustering Application for UKT Determination Using Pillar K-Means Clustering Algorithm and Flask Web Framework","authors":"A. Ramdani, H. Firmansyah","doi":"10.24014/ijaidm.v1i2.5126","DOIUrl":null,"url":null,"abstract":"Clustering is one of technique in data mining which has purpose to group data into a cluster. At the end, a cluster will have different data compared with others. This paper discussed about the implementation of clustering technique in determining UKT (Uang Kuliah Tinggal) / Tuition Fee in Indonesia. UKT is a tuition fee where its amount is determined by considering students purchasing power. Most of University in Indonesia often use manual technique in order to classify UKT’s group for each student. Using web-based application, this paper proposed a new approach to automatise UKT’s grouping which leads to give an reasonable recommendation in determining the UKT’s group. Pillar K-Means algorithm had been implemented to conduct data clustering. This algorithm used pillar algorithm to initiate centroid value in K-means algorithm. By deploying students data at Institut Teknologi Sumatera Lampung as case study, the result illustrated that Pillar K-Means and silhouette coefficient value might be adopted in determining UKT’s group","PeriodicalId":385582,"journal":{"name":"Indonesian Journal of Artificial Intelligence and Data Mining","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24014/ijaidm.v1i2.5126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Clustering is one of technique in data mining which has purpose to group data into a cluster. At the end, a cluster will have different data compared with others. This paper discussed about the implementation of clustering technique in determining UKT (Uang Kuliah Tinggal) / Tuition Fee in Indonesia. UKT is a tuition fee where its amount is determined by considering students purchasing power. Most of University in Indonesia often use manual technique in order to classify UKT’s group for each student. Using web-based application, this paper proposed a new approach to automatise UKT’s grouping which leads to give an reasonable recommendation in determining the UKT’s group. Pillar K-Means algorithm had been implemented to conduct data clustering. This algorithm used pillar algorithm to initiate centroid value in K-means algorithm. By deploying students data at Institut Teknologi Sumatera Lampung as case study, the result illustrated that Pillar K-Means and silhouette coefficient value might be adopted in determining UKT’s group
基于柱k均值聚类算法和Flask Web框架的UKT聚类应用
聚类是数据挖掘中的一种技术,其目的是将数据分组成一个簇。最后,一个集群将拥有与其他集群不同的数据。本文讨论了聚类技术在印度尼西亚确定UKT (Uang Kuliah Tinggal) /学费中的实施情况。UKT是一种学费,其数额取决于学生的购买力。印度尼西亚的大多数大学经常使用手工技术,以便为每个学生分类UKT的组。本文利用基于web的应用程序,提出了一种自动分组UKT的新方法,从而为UKT分组的确定提供了合理的建议。采用Pillar K-Means算法进行数据聚类。该算法采用K-means算法中的柱形算法初始化质心值。以苏门答腊南堡理工学院学生数据为例,结果表明,柱形k均值和轮廓系数值可以用于确定UKT的群体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信