{"title":"Application of LS-SVM technique based on robust control strategy to AGC of power system","authors":"Gulshan Sharma, K. R. Niazi, Ibraheem","doi":"10.1109/ICAETR.2014.7012953","DOIUrl":null,"url":null,"abstract":"A nonlinear least squares support vector machine (LS-SVM) based automatic generation control (AGC) regulator is investigated in this paper. The proposed regulator is trained using a reliable data set consisting of wide operating conditions generated by robust control technique. The designed AGC regulators combine advantage of LS-SVM and robust control technique to achieve desired level of performance for all admissible uncertainties and leads to a flexible regulator with simple structure, which can be useful under diverse operating conditions. A performance comparison between proposed LS-SVM, conventional PI and multi-layer perceptron (MLP) neural network based AGC regulators is carried out in a two-area power system under various operating conditions and load changes to show the superiority of the proposed control strategy.","PeriodicalId":196504,"journal":{"name":"2014 International Conference on Advances in Engineering & Technology Research (ICAETR - 2014)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advances in Engineering & Technology Research (ICAETR - 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAETR.2014.7012953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A nonlinear least squares support vector machine (LS-SVM) based automatic generation control (AGC) regulator is investigated in this paper. The proposed regulator is trained using a reliable data set consisting of wide operating conditions generated by robust control technique. The designed AGC regulators combine advantage of LS-SVM and robust control technique to achieve desired level of performance for all admissible uncertainties and leads to a flexible regulator with simple structure, which can be useful under diverse operating conditions. A performance comparison between proposed LS-SVM, conventional PI and multi-layer perceptron (MLP) neural network based AGC regulators is carried out in a two-area power system under various operating conditions and load changes to show the superiority of the proposed control strategy.