Dynamic reconfiguration of parallel sensor integration system by model estimation

T. Kawashima, T. Nagasaki, M. Toda, Y. Aoki
{"title":"Dynamic reconfiguration of parallel sensor integration system by model estimation","authors":"T. Kawashima, T. Nagasaki, M. Toda, Y. Aoki","doi":"10.1109/MFI.1994.398473","DOIUrl":null,"url":null,"abstract":"Model-based sensor integration is a practical way of using multiple sensor information. The approach, however, cannot be applied when the model is unavailable. In this paper, we propose a dynamic reconfiguration mechanism of parallel sensor fusion network by model estimation. Our estimation algorithm recognizes the target mechanism from the state transition rules of relative motion between rigid bodies. Hierarchical grouping of sensor data realizes this idea. The approach is applied to a 2D-kinematic planar system, and the result is described.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"4 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model-based sensor integration is a practical way of using multiple sensor information. The approach, however, cannot be applied when the model is unavailable. In this paper, we propose a dynamic reconfiguration mechanism of parallel sensor fusion network by model estimation. Our estimation algorithm recognizes the target mechanism from the state transition rules of relative motion between rigid bodies. Hierarchical grouping of sensor data realizes this idea. The approach is applied to a 2D-kinematic planar system, and the result is described.<>
基于模型估计的并联传感器集成系统动态重构
基于模型的传感器集成是一种利用多传感器信息的实用方法。然而,当模型不可用时,该方法不能应用。本文提出了一种基于模型估计的并行传感器融合网络动态重构机制。我们的估计算法从刚体间相对运动的状态转换规律来识别目标机构。传感器数据的分层分组实现了这一思想。将该方法应用于一个二维运动平面系统,并给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信