Sensitivity Based Anonymization with Multi-dimensional Mixed Generalization

Esther Gachanga, Michael W. Kimwele, L. Nderu
{"title":"Sensitivity Based Anonymization with Multi-dimensional Mixed Generalization","authors":"Esther Gachanga, Michael W. Kimwele, L. Nderu","doi":"10.1109/ICDIM.2018.8847000","DOIUrl":null,"url":null,"abstract":"Sensitive information about individuals must not be revealed when sharing data, but a data set must remain useful for research and analysis when published. Anonymization methods have been considered as a possible solution for protecting the privacy of individuals. This is achieved by transforming data in a way that guarantees a certain degree of protection from re-identification threats. In the process, it is important to ensure that the quality of data is preserved. K-anonymity is the most commonly used approach for the anonymization of published datasets. However, the approach causes a decline in data utility. The key challenge for data publishers is how to anonymize data without causing a significant decline in data utility. The paper addresses this challenge by proposing a multidimensional mixed generalization. We conduct experiments with mixed generalization. Our results show that mixed generalization preserves the quality of data for classification.","PeriodicalId":120884,"journal":{"name":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","volume":"17 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2018.8847000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sensitive information about individuals must not be revealed when sharing data, but a data set must remain useful for research and analysis when published. Anonymization methods have been considered as a possible solution for protecting the privacy of individuals. This is achieved by transforming data in a way that guarantees a certain degree of protection from re-identification threats. In the process, it is important to ensure that the quality of data is preserved. K-anonymity is the most commonly used approach for the anonymization of published datasets. However, the approach causes a decline in data utility. The key challenge for data publishers is how to anonymize data without causing a significant decline in data utility. The paper addresses this challenge by proposing a multidimensional mixed generalization. We conduct experiments with mixed generalization. Our results show that mixed generalization preserves the quality of data for classification.
基于灵敏度的多维混合泛化匿名化
在共享数据时不能泄露个人的敏感信息,但数据集在发布时必须对研究和分析有用。匿名化方法被认为是保护个人隐私的一种可能的解决方案。这是通过以某种方式转换数据来实现的,这种方式保证了一定程度的保护,以防止再次识别威胁。在这个过程中,确保数据的质量是很重要的。k -匿名是发表数据集匿名化最常用的方法。然而,这种方法会导致数据效用的下降。数据发布者面临的主要挑战是如何在不导致数据效用显著下降的情况下对数据进行匿名化。本文通过提出一个多维混合泛化来解决这一挑战。我们进行混合泛化实验。我们的研究结果表明,混合泛化保留了分类数据的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信