{"title":"Adaptive Hierarchical Fuzzy CMAC Controller with Stable Learning Algorithm for Unknown Nonlinear Systems","authors":"F. Ortiz, Wen Yu, M. Moreno-Armendáriz","doi":"10.1109/MICAI.2007.26","DOIUrl":null,"url":null,"abstract":"In this paper, adaptive hierarchical fuzzy CMAC neural network controller (HFCMAC), for a certain class of nonlinear dynamical system is presented. The main advantages of adaptive HFCMAC control are: Better performance of the controller because adaptive HFCMAC can adjust itself to the changing enviroment and can be implemented in real time applications. The proposed method provides a simple control architecture that merges hierarchical structure, CMAC neural network and fuzzy logic. The input space dimension in CMAC is a time-consuming task especially when the number of inputs is huge this would be overload the memory and make the neuro-fuzzy system very hard to implement. This is can be simplified using a number of low-dimensional fuzzy CMAC in a hierarchical form. A new adaptation law is obtained for the method proposed, the overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Simulation results for its applications to one example is presented to demonstrate the performance of the proposed methodology.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"34 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, adaptive hierarchical fuzzy CMAC neural network controller (HFCMAC), for a certain class of nonlinear dynamical system is presented. The main advantages of adaptive HFCMAC control are: Better performance of the controller because adaptive HFCMAC can adjust itself to the changing enviroment and can be implemented in real time applications. The proposed method provides a simple control architecture that merges hierarchical structure, CMAC neural network and fuzzy logic. The input space dimension in CMAC is a time-consuming task especially when the number of inputs is huge this would be overload the memory and make the neuro-fuzzy system very hard to implement. This is can be simplified using a number of low-dimensional fuzzy CMAC in a hierarchical form. A new adaptation law is obtained for the method proposed, the overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Simulation results for its applications to one example is presented to demonstrate the performance of the proposed methodology.