Fast Collective Decision-Making without Prior Knowledge

Nicolas Cambier, E. Ferrante
{"title":"Fast Collective Decision-Making without Prior Knowledge","authors":"Nicolas Cambier, E. Ferrante","doi":"10.1145/3583133.3590623","DOIUrl":null,"url":null,"abstract":"Multi-agent systems are often presented as a solution for dangerous missions, such as search-and-rescue and disaster relief, which require timely decision-making. However, the corresponding environments rarely allow for long range communication or control, and often come with a lack of crucial information for autonomous decision-making (e.g. topology of the area, or number and priority of targets). In this paper, we present a fast collective decision-making framework for robotic swarms, which requires no external infrastructure or pre-existing knowledge. This method is based on running an abstract decision-making model simultaneously with an ad-hoc navigation strategy. We demonstrate the scalability of our proposed method with respect to the swarm size, and its flexibility regarding the number and quality of alternatives, in simulated experiments.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-agent systems are often presented as a solution for dangerous missions, such as search-and-rescue and disaster relief, which require timely decision-making. However, the corresponding environments rarely allow for long range communication or control, and often come with a lack of crucial information for autonomous decision-making (e.g. topology of the area, or number and priority of targets). In this paper, we present a fast collective decision-making framework for robotic swarms, which requires no external infrastructure or pre-existing knowledge. This method is based on running an abstract decision-making model simultaneously with an ad-hoc navigation strategy. We demonstrate the scalability of our proposed method with respect to the swarm size, and its flexibility regarding the number and quality of alternatives, in simulated experiments.
没有先验知识的快速集体决策
多智能体系统通常作为危险任务的解决方案,例如需要及时决策的搜索和救援和救灾。然而,相应的环境很少允许远程通信或控制,并且经常缺乏自主决策的关键信息(例如,区域拓扑结构,或目标的数量和优先级)。在本文中,我们提出了一个机器人群体的快速集体决策框架,它不需要外部基础设施或预先存在的知识。该方法是基于一个抽象的决策模型和一个特别的导航策略同时运行。在模拟实验中,我们证明了我们提出的方法在群体规模方面的可扩展性,以及它在替代方案的数量和质量方面的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信