Heart Murmur Classification in Phonocardiogram Representations Using Convolutional Neural Networks

Mehlam Shabbir, Xudong Liu, M. Nasseri, S. Helgeson
{"title":"Heart Murmur Classification in Phonocardiogram Representations Using Convolutional Neural Networks","authors":"Mehlam Shabbir, Xudong Liu, M. Nasseri, S. Helgeson","doi":"10.32473/flairs.36.133189","DOIUrl":null,"url":null,"abstract":"Heart murmurs are sounds made by rapid blood flow in the heart. Abnormal heart murmurs can be a sign of serious heart conditions such as arrhythmia and cardiovascular diseases. Therefore, heart murmur classification is crucial for early detection of such conditions. To this end, we study the heart murmur classification problem training selected convolutional neural network (CNN) models (such as VGGNet and ResNet) using various signal representations (such as spectrogram, mel-frequency cepstral coefficient (MFCC), and shorttime Fourier transform (STFT)) of the phonocardiograms in the public PASCAL CHSC dataset. Our preliminary results show that ResNet outperforms VGGNet across all metrics and representations, consistent with the recent published works we can find in literature. Unlike some of these works, however, we see MFCC and STFT in general more effective with higher test accuracies than spectrogram across all CNN models. Looking forward, we propose to study other effective models (such as InceptionV3 and Vision Transformer) to predict heart murmur conditions in phonocardiogram representations including spectrogram, MFCC and STFT, as well as others like Wigner Ville distribution.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heart murmurs are sounds made by rapid blood flow in the heart. Abnormal heart murmurs can be a sign of serious heart conditions such as arrhythmia and cardiovascular diseases. Therefore, heart murmur classification is crucial for early detection of such conditions. To this end, we study the heart murmur classification problem training selected convolutional neural network (CNN) models (such as VGGNet and ResNet) using various signal representations (such as spectrogram, mel-frequency cepstral coefficient (MFCC), and shorttime Fourier transform (STFT)) of the phonocardiograms in the public PASCAL CHSC dataset. Our preliminary results show that ResNet outperforms VGGNet across all metrics and representations, consistent with the recent published works we can find in literature. Unlike some of these works, however, we see MFCC and STFT in general more effective with higher test accuracies than spectrogram across all CNN models. Looking forward, we propose to study other effective models (such as InceptionV3 and Vision Transformer) to predict heart murmur conditions in phonocardiogram representations including spectrogram, MFCC and STFT, as well as others like Wigner Ville distribution.
用卷积神经网络对心音图表示的心脏杂音分类
心杂音是由于心脏血液快速流动而发出的声音。异常的心脏杂音可能是心律失常和心血管疾病等严重心脏疾病的征兆。因此,心脏杂音的分类对于早期发现此类疾病至关重要。为此,我们研究了心脏杂音分类问题训练选择卷积神经网络(CNN)模型(如VGGNet和ResNet),使用各种信号表示(如频谱图,mel-frequency cepstral系数(MFCC)和短时傅立叶变换(STFT))在公共PASCAL CHSC数据集中的心音图。我们的初步结果表明,ResNet在所有指标和表示上都优于VGGNet,这与我们在文献中发现的最近发表的作品一致。然而,与这些工作中的一些不同,我们看到MFCC和STFT通常比所有CNN模型的频谱图更有效,测试精度更高。展望未来,我们建议研究其他有效的模型(如InceptionV3和Vision Transformer)来预测心音图表示中的心脏杂音情况,包括频谱图、MFCC和STFT,以及其他如Wigner Ville分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信