Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator

M. Reshadi, David Gregg
{"title":"Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator","authors":"M. Reshadi, David Gregg","doi":"10.1109/PDP59025.2023.00019","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNN) have become a significant applications in both cloud-server and edge devices. Meanwhile, the growing number of DNNs on those platforms raises the need to execute multiple DNNs on the same device. This paper proposes a dynamic partitioning algorithm to perform concurrent processing of multiple DNNs on asystolic-array-based accelerator. Sharing an accelerator's storage and processing resources across multiple DNNs increases resource utilization and reduces computation time and energy consumption. To this end, we propose a partitioned weight stationary dataflow with a minor modification in the logic of the processing element. We evaluate the energy consumption and computation time with both heavy and light workloads. Simulation results show a 35% and 62% improvement in energy consumption and 56% and 44% in computation time under heavy and light workloads, respectively, compared with single tenancy.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks (DNN) have become a significant applications in both cloud-server and edge devices. Meanwhile, the growing number of DNNs on those platforms raises the need to execute multiple DNNs on the same device. This paper proposes a dynamic partitioning algorithm to perform concurrent processing of multiple DNNs on asystolic-array-based accelerator. Sharing an accelerator's storage and processing resources across multiple DNNs increases resource utilization and reduces computation time and energy consumption. To this end, we propose a partitioned weight stationary dataflow with a minor modification in the logic of the processing element. We evaluate the energy consumption and computation time with both heavy and light workloads. Simulation results show a 35% and 62% improvement in energy consumption and 56% and 44% in computation time under heavy and light workloads, respectively, compared with single tenancy.
基于收缩阵列的多租户DNN加速器动态资源分区
深度神经网络(DNN)已经成为云服务器和边缘设备的重要应用。同时,这些平台上不断增长的dnn数量增加了在同一设备上执行多个dnn的需求。提出了一种动态分区算法,在基于无收缩阵列的加速器上实现多个深度神经网络的并发处理。在多个dnn之间共享加速器的存储和处理资源可以提高资源利用率,减少计算时间和能耗。为此,我们提出了一个分区的权重固定数据流,并对处理元素的逻辑进行了轻微的修改。我们评估了重型和轻型工作负载下的能耗和计算时间。模拟结果显示,与单租户相比,在重工作负载和轻工作负载下,能耗分别提高了35%和62%,计算时间分别提高了56%和44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信